28 research outputs found

    Organic matter exudation by Emiliania huxleyi under simulated future ocean conditions

    Get PDF
    Emiliania huxleyi (strain B 92/11) was exposed to different nutrient supply, CO2 and temperature conditions in phosphorus controlled chemostats to investigate effects on organic carbon exudation and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and extracellular release (ER) were performed. Chemical analysis included the amount and composition of high molecular weight (>1 kDa) dissolved combined carbohydrates (HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 μatm pCO2 at 14 °C, and additionally 900 μatm pCO2 at 18 °C simulating a greenhouse ocean scenario. Enhanced nutrient stress by reducing the dilution rate (D) from D = 0.3 d−1 to D = 0.1 d−1 (D = μ) induced the strongest response in E. huxleyi. At μ = 0.3 d−1, PP was significantly higher at elevated CO2 and temperature and DO14C production correlated to PO14C production in all treatments, resulting in similar percentages of extracellular release (PER; (DO14C production/PP) × 100) averaging 3.74 ± 0.94%. At μ = 0.1 d−1, PO14C production decreased significantly, while exudation of DO14C increased. Thus, indicating a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at μ = 0.1 d−1 at elevated CO2 and temperature. While cell densities remained constant within each treatment and throughout the experiment, concentrations of HMW-dCCHO, pCCHO and TEP were generally higher under enhanced nutrient stress. At μ = 0.3 d−1, pCCHO concentration increased significantly with elevated CO2 and temperature. At μ = 0.1 d−1, the contribution (mol % C) of HMW-dCCHO to DOC was lower at elevated CO2 and temperature while pCCHO and TEP concentrations were higher. This was most pronounced under greenhouse conditions. Our findings suggest a stronger transformation of primary produced DOC into POC by coagulation of exudates under nutrient limitation. Our results further imply that elevated CO2 and temperature will increase exudation by E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes

    Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi

    Get PDF
    Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady state conditions in phosphorus controlled chemostats (N : P = 29, growth rate of μ = 0.2 d−1). 14C incubations were accomplished to determine primary production (PP), comprised by particulate (PO14C) and dissolved organic carbon (DO14C), and the concentration and composition of particulate combined carbohydrates (pCCHO), and of high molecular weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) as major components of ER. Information on size distribution of ER products was obtained by investigating distinct size classes (10 kDa was significantly different with higher Mol% of arabinose. Mol% of acidic sugars increased and Mol% glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions

    Effects of nitrate and phosphate supply on chromophoric and fluorescent dissolved organic matter in the Eastern Tropical North Atlantic: a mesocosm study

    Get PDF
    In open-ocean regions, as is the Eastern Tropical North Atlantic (ETNA), pelagic production is the main source of dissolved organic matter (DOM) and is affected by dissolved inorganic nitrogen (DIN) and phosphorus (DIP) concentrations. Changes in pelagic production under nutrient amendments were shown to also modify DOM quantity and quality. However, little information is available about the effects of nutrient variability on chromophoric (CDOM) and fluorescent (FDOM) DOM dynamics. Here we present results from two mesocosm experiments ("Varied P" and "Varied N") conducted with a natural plankton community from the ETNA, where the effects of DIP and DIN supply on DOM optical properties were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. Spectral slope (S) decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was produced by bacteria proportionally to DIN supply. The protein-like FDOM component (Comp.2) was released irrespectively to phytoplankton or bacterial biomass, but depended on DIP and DIN concentrations. Under high DIN supply, Comp.2 was removed by bacterial reworking, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation of Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and quality of optically active DOM and, therefore, might bias results of the applied in situ optical techniques for an estimation of DOC concentrations in open-ocean regions

    Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study

    Get PDF
    The effect of elevated seawater carbon dioxide (CO2) on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA). A pCO2 range of 175–1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard). The bacterioplankton communities responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity and revealed a close coupling of heterotrophic bacterial activity to phytoplankton productivity in this experiment. The natural extracellular enzyme assemblages showed increased activity in response to moderate acidification. A decrease in seawater pH of 0.5 units roughly doubled rates of β-glucosidase and leucine-aminopeptidase. Activities of extracellular enzymes in the mesocosms were directly related to both seawater pH and primary production. Also primary production and bacterial protein production in the mesocosms at different pCO2 were positively correlated. Therefore, it can be suggested that the efficient heterotrophic carbon utilization in this Arctic microbial food web had the potential to counteract increased phytoplankton production that was achieved under elevated pCO2 in this study. However, our results also show that the transfer of beneficial pCO2-related effects on the cellular bacterial metabolism to the scale of community activity and organic matter degradation can be mitigated by the top-down control of bacterial abundances in natural microbial communities

    CO2 increases 14C-primary production in an Arctic plankton community

    Get PDF
    Responses to ocean acidification in plankton communities were studied during a CO2-enrichment experiment in the Arctic Ocean, accomplished from June to July 2010 in Kongsfjorden, Svalbard (78°56′ 2′′ N, 11°53′ 6′′ E). Enclosed in 9 mesocosms (volume: 43.9–47.6 m3), plankton was exposed to CO2 concentrations, ranging from glacial to projected mid-next-century levels. Fertilization with inorganic nutrients at day 13 of the experiment supported the accumulation of phytoplankton biomass, as indicated by two periods of high chl a concentration. This study tested for CO2 sensitivities in primary production (PP) of particulate organic carbon (PPPOC) and of dissolved organic carbon (PPDOC). Therefore, 14C-bottle incubations (24 h) of mesocosm samples were performed at 1 m depth receiving about 60% of incoming radiation. PP for all mesocosms averaged 8.06 ± 3.64 μmol C L−1 d−1 and was slightly higher than in the outside fjord system. Comparison between mesocosms revealed significantly higher PPPOC at elevated compared to low pCO2 after nutrient addition. PPDOC was significantly higher in CO2-enriched mesocosms before as well as after nutrient addition, suggesting that CO2 had a direct influence on DOC production. DOC concentrations inside the mesocosms increased before nutrient addition and more in high CO2 mesocosms. After addition of nutrients, however, further DOC accumulation was negligible and not significantly different between treatments, indicating rapid utilization of freshly produced DOC. Bacterial biomass production (BP) was coupled to PP in all treatments, indicating that 3.5 ± 1.9% of PP or 21.6 ± 12.5% of PPDOC provided on average sufficient carbon for synthesis of bacterial biomass. During the later course of the bloom, the response of 14C-based PP rates to CO2 enrichment differed from net community production (NCP) rates that were also determined during this mesocosm campaign. We conclude that the enhanced release of labile DOC during autotrophic production at high CO2 exceedingly stimulated activities of heterotrophic microorganisms. As a consequence, increased PP induced less NCP, as suggested earlier for carbon-limited microbial systems in the Arctic

    Effects of varied nitrate and phosphate supply on polysaccharidic and proteinaceous gel particles production during tropical phytoplankton bloom experiments

    Get PDF
    Gel particles such as the polysaccharidic transparent exopolymer particles (TEP) and the proteinaceous Coomassie stainable particles (CSP) play an important role in marine biogeochemical and ecological processes like particle aggregation and export, or microbial nutrition and growth. So far, effects of nutrient availability or of changes in nutrient ratios on gel particle production and fate are not well understood. The tropical ocean includes large oxygen minimum zones, where nitrogen losses due to anaerobic microbial activity result in a lower supply of nitrate relative to phosphate to the euphotic zone. Here, we report of two series of mesocosm experiments that were conducted with natural plankton communities collected from the eastern tropical North Atlantic (ETNA) close to Cape Verde in October 2012. The experiments were performed to investigate how different phosphate (experiment 1, Varied P: 0.15–1.58 μmol L−1) or nitrate (experiment 2, Varied N: 1.9–21.9 μmol L−1) concentrations affect the abundance and size distribution of TEP and CSP. In the days until the bloom peak was reached, a positive correlation between gel particle abundance and Chl a concentration was determined, linking the release of dissolved gel precursors and the subsequent formation of gel particles to autotrophic production. After the bloom peak, gel particle abundance remained stable or even increased, implying a continued partitioning of dissolved into particulate organic matter after biomass production itself ceased. During both experiments, differences between TEP and CSP dynamics were observed; TEP were generally more abundant than CSP. Changes in size distribution indicated aggregation of TEP after the bloom, while newly formed CSP decomposed. Abundance of gel particles clearly increased with nitrate concentration during the second experiment, suggesting that changes in [DIN] : [DIP] ratios can affect gel particle formation with potential consequences for carbon and nitrogen cycling as well as food web dynamics in tropical ecosystems

    Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation – a mesocosm experiment in the eastern tropical North Atlantic

    Get PDF
    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67–48). Silicic acid was supplied at 15 µmol L−1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria–proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially influencing primary productivity and carbon export

    Kombinierter Effekt von CO2 und Temperatur auf Emiliania huxleyi bei starker Nährstofflimitierung

    No full text
    Primary production in the sunlit surface ocean is the driving force for the uptake of atmospheric CO2 and basis for its potential sequestration into the ocean s interior. As a consequence of the ongoing anthropogenic emissions of the greenhouse gas CO2, future climate will cause multiple environmental changes in the global ocean, including acidification, warming and nutrient availability. This thesis deals with the synergistic effect of elevated CO2 and temperature at phosphorus limitation on organic matter production by Emiliania huxleyi. Experiments were accomplished by means of a fully controlled continuous culture facility, concerning the combined manipulation of nutrient supply, growth rates, CO2 and temperature. Cell density, particulate organic carbon (POC) concentration and cell size of E. huxleyi were affected to varying degrees by applied growth, CO2 and temperature conditions. Elevated CO2 and temperature (greenhouse scenario) clearly led to an extended plasticity of E. huxleyi concerning a minimum phosphorus cell quota. The ability to produce more organic matter on low nutrient supply most likely gives rise to the production of high amounts of carbon rich biomass characterised by high elemental C:N:P ratios. Emphasis was put on the impact of global change on the production of dissolved and particulate organic carbon, in order to gain a comprehensive understanding of the general partitioning between dissolved organic carbon (DOC) and POC. 14C incubations revealed that the partitioning between photosynthetically derived DOC and POC is highly dependent, not only on nutrient status and growth rate, but additionally affected by the combined rise of CO2 and temperature. Higher percentages of extracellular release (PER) were determined at lower growth rates and greenhouse conditions induced highest PER, thus the strongest partitioning to the dissolved pool. A major fraction of DOC is comprised by combined carbohydrates (CCHO) which are suggested to contain the pre-cursor molecules for aggregation and coagulation processes back to POC. The formation of gel-particles like transparent exopolymer particles (TEP) provides an abiotic linkage between DOC and POC. Enhanced partitioning to DOC also provides more high molecular weight (>1kDa) HMWdCCHO and therefore higher concentrations of pre-cursor material, potentially transferred back to POC. Despite of high PER, the percentage of HMW-dCCHO was smallest at greenhouse conditions accompanied by highest concentrations of TEP. Our results imply that greenhouse conditions will enhance exudation processes in E.huxleyi and may affect organic carbon partitioning in the greenhouse ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes. With respect to global climate change, the amount and composition of DOC is of major interest to marine biologists, since it provides either a substrate for bacterial turnover or the pre-cursors for particle aggregation. In order to elucidate the role of carbon partitioning in oligotrophic regions in the future ocean, characterisation of dissolved organic material derived from E. huxleyi may provide information on its fate and function within the microbial loop and food-web dynamics

    Combined CO2 and temperature effects on Emiliania huxleyi under severe nutrient stress

    No full text
    Primary production in the sunlit surface ocean is the driving force for the uptake of atmospheric CO2 and basis for its potential sequestration into the ocean s interior. As a consequence of the ongoing anthropogenic emissions of the greenhouse gas CO2, future climate will cause multiple environmental changes in the global ocean, including acidification, warming and nutrient availability. This thesis deals with the synergistic effect of elevated CO2 and temperature at phosphorus limitation on organic matter production by Emiliania huxleyi. Experiments were accomplished by means of a fully controlled continuous culture facility, concerning the combined manipulation of nutrient supply, growth rates, CO2 and temperature. Cell density, particulate organic carbon (POC) concentration and cell size of E. huxleyi were affected to varying degrees by applied growth, CO2 and temperature conditions. Elevated CO2 and temperature (greenhouse scenario) clearly led to an extended plasticity of E. huxleyi concerning a minimum phosphorus cell quota. The ability to produce more organic matter on low nutrient supply most likely gives rise to the production of high amounts of carbon rich biomass characterised by high elemental C:N:P ratios. Emphasis was put on the impact of global change on the production of dissolved and particulate organic carbon, in order to gain a comprehensive understanding of the general partitioning between dissolved organic carbon (DOC) and POC. 14C incubations revealed that the partitioning between photosynthetically derived DOC and POC is highly dependent, not only on nutrient status and growth rate, but additionally affected by the combined rise of CO2 and temperature. Higher percentages of extracellular release (PER) were determined at lower growth rates and greenhouse conditions induced highest PER, thus the strongest partitioning to the dissolved pool. A major fraction of DOC is comprised by combined carbohydrates (CCHO) which are suggested to contain the pre-cursor molecules for aggregation and coagulation processes back to POC. The formation of gel-particles like transparent exopolymer particles (TEP) provides an abiotic linkage between DOC and POC. Enhanced partitioning to DOC also provides more high molecular weight (>1kDa) HMWdCCHO and therefore higher concentrations of pre-cursor material, potentially transferred back to POC. Despite of high PER, the percentage of HMW-dCCHO was smallest at greenhouse conditions accompanied by highest concentrations of TEP. Our results imply that greenhouse conditions will enhance exudation processes in E.huxleyi and may affect organic carbon partitioning in the greenhouse ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes. With respect to global climate change, the amount and composition of DOC is of major interest to marine biologists, since it provides either a substrate for bacterial turnover or the pre-cursors for particle aggregation. In order to elucidate the role of carbon partitioning in oligotrophic regions in the future ocean, characterisation of dissolved organic material derived from E. huxleyi may provide information on its fate and function within the microbial loop and food-web dynamics
    corecore