46 research outputs found
Holomorphic Simplicity Constraints for 4d Spinfoam Models
Within the framework of spinfoam models, we revisit the simplicity
constraints reducing topological BF theory to 4d Riemannian gravity. We use the
reformulation of SU(2) intertwiners and spin networks in term of spinors, which
has come out from both the recently developed U(N) framework for SU(2)
intertwiners and the twisted geometry approach to spin networks and spinfoam
boundary states. Using these tools, we are able to perform a
holomorphic/anti-holomorphic splitting of the simplicity constraints and define
a new set of holomorphic simplicity constraints, which are equivalent to the
standard ones at the classical level and which can be imposed strongly on
intertwiners at the quantum level. We then show how to solve these new
holomorphic simplicity constraints using coherent intertwiner states. We
further define the corresponding coherent spin network functionals and
introduce a new spinfoam model for 4d Riemannian gravity based on these
holomorphic simplicity constraints and whose amplitudes are defined from the
evaluation of the new coherent spin networks.Comment: 27 page
Classical Setting and Effective Dynamics for Spinfoam Cosmology
We explore how to extract effective dynamics from loop quantum gravity and
spinfoams truncated to a finite fixed graph, with the hope of modeling
symmetry-reduced gravitational systems. We particularize our study to the
2-vertex graph with N links. We describe the canonical data using the recent
formulation of the phase space in terms of spinors, and implement a
symmetry-reduction to the homogeneous and isotropic sector. From the canonical
point of view, we construct a consistent Hamiltonian for the model and discuss
its relation with Friedmann-Robertson-Walker cosmologies. Then, we analyze the
dynamics from the spinfoam approach. We compute exactly the transition
amplitude between initial and final coherent spin networks states with support
on the 2-vertex graph, for the choice of the simplest two-complex (with a
single space-time vertex). The transition amplitude verifies an exact
differential equation that agrees with the Hamiltonian constructed previously.
Thus, in our simple setting we clarify the link between the canonical and the
covariant formalisms.Comment: 38 pages, v2: Link with discretized loop quantum gravity made
explicit and emphasize
Generating Functions for Coherent Intertwiners
We study generating functions for the scalar products of SU(2) coherent
intertwiners, which can be interpreted as coherent spin network evaluations on
a 2-vertex graph. We show that these generating functions are exactly summable
for different choices of combinatorial weights. Moreover, we identify one
choice of weight distinguished thanks to its geometric interpretation. As an
example of dynamics, we consider the simple case of SU(2) flatness and describe
the corresponding Hamiltonian constraint whose quantization on coherent
intertwiners leads to partial differential equations that we solve.
Furthermore, we generalize explicitly these Wheeler-DeWitt equations for SU(2)
flatness on coherent spin networks for arbitrary graphs.Comment: 31 page
Effective Hamiltonian Constraint from Group Field Theory
Spinfoam models provide a covariant formulation of the dynamics of loop
quantum gravity. They are non-perturbatively defined in the group field theory
(GFT) framework: the GFT partition function defines the sum of spinfoam
transition amplitudes over all possible (discretized) geometries and
topologies. The issue remains, however, of explicitly relating the specific
form of the group field theory action and the canonical Hamiltonian constraint.
Here, we suggest an avenue for addressing this issue. Our strategy is to expand
group field theories around non-trivial classical solutions and to interpret
the induced quadratic kinematical term as defining a Hamiltonian constraint on
the group field and thus on spin network wave functions. We apply our procedure
to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss
the relevance of understanding the spectrum of this Hamiltonian operator for
the renormalization of group field theories.Comment: 14 page
Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model
A dual formulation of group field theories, obtained by a Fourier transform
mapping functions on a group to functions on its Lie algebra, has been proposed
recently. In the case of the Ooguri model for SO(4) BF theory, the variables of
the dual field variables are thus so(4) bivectors, which have a direct
interpretation as the discrete B variables. Here we study a modification of the
model by means of a constraint operator implementing the simplicity of the
bivectors, in such a way that projected fields describe metric tetrahedra. This
involves a extension of the usual GFT framework, where boundary operators are
labelled by projected spin network states. By construction, the Feynman
amplitudes are simplicial path integrals for constrained BF theory. We show
that the spin foam formulation of these amplitudes corresponds to a variant of
the Barrett-Crane model for quantum gravity. We then re-examin the arguments
against the Barrett-Crane model(s), in light of our construction.Comment: revtex, 24 page
Group field theory and simplicial quantum gravity
We present a new Group Field Theory for 4d quantum gravity. It incorporates
the constraints that give gravity from BF theory, and has quantum amplitudes
with the explicit form of simplicial path integrals for 1st order gravity. The
geometric interpretation of the variables and of the contributions to the
quantum amplitudes is manifest. This allows a direct link with other simplicial
gravity approaches, like quantum Regge calculus, in the form of the amplitudes
of the model, and dynamical triangulations, which we show to correspond to a
simple restriction of the same.Comment: 14 pages, no figures; RevTex4; v2: definition of the model modified,
discussion extended and improve
A New Recursion Relation for the 6j-Symbol
The 6j-symbol is a fundamental object from the re-coupling theory of SU(2)
representations. In the limit of large angular momenta, its asymptotics is
known to be described by the geometry of a tetrahedron with quantized lengths.
This article presents a new recursion formula for the square of the 6j-symbol.
In the asymptotic regime, the new recursion is shown to characterize the
closure of the relevant tetrahedron. Since the 6j-symbol is the basic building
block of the Ponzano-Regge model for pure three-dimensional quantum gravity, we
also discuss how to generalize the method to derive more general recursion
relations on the full amplitudes.Comment: 10 pages, v2: title and introduction changed, paper re-structured;
Annales Henri Poincare (2011
Encoding simplicial quantum geometry in group field theories
We show that a new symmetry requirement on the GFT field, in the context of
an extended GFT formalism, involving both Lie algebra and group elements,
leads, in 3d, to Feynman amplitudes with a simplicial path integral form based
on the Regge action, to a proper relation between the discrete connection and
the triad vectors appearing in it, and to a much more satisfactory and
transparent encoding of simplicial geometry already at the level of the GFT
action.Comment: 15 pages, 2 figures, RevTeX, references adde
Non-commutative flux representation for loop quantum gravity
The Hilbert space of loop quantum gravity is usually described in terms of
cylindrical functionals of the gauge connection, the electric fluxes acting as
non-commuting derivation operators. It has long been believed that this
non-commutativity prevents a dual flux (or triad) representation of loop
quantum gravity to exist. We show here, instead, that such a representation can
be explicitly defined, by means of a non-commutative Fourier transform defined
on the loop gravity state space. In this dual representation, flux operators
act by *-multiplication and holonomy operators act by translation. We describe
the gauge invariant dual states and discuss their geometrical meaning. Finally,
we apply the construction to the simpler case of a U(1) gauge group and compare
the resulting flux representation with the triad representation used in loop
quantum cosmology.Comment: 12 pages, matches published versio