70 research outputs found
Многоканальная система сбора и обработки информации с использованием интерфейса USB
В статье рассмотрены принципы построения многофункциональной информационно – измерительной системы освещения подводной обстановки акваторий.У статті розглянуті принципи побудови багатофункціональної інформаційно–вимірювальної системи висвітлення підводної обстановки акваторій.In the paper the principles of construction of multifunctional information-measuring system of underwater area illumination are examined
Heat shock proteins are essential components in transformation and tumor progression: Cancer cell intrinsic pathways and beyond
Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.Fil: Lang, Benjamin J.. Harvard Medical School; Estados UnidosFil: Guerrero Gimenez, Martin Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Prince, Thomas L.. Geisinger Medical Center; Estados UnidosFil: Ackerman, Andrew. Geisinger Medical Center; Estados UnidosFil: Bonorino, Cristina. Universidade Federal de Ciências da Saúde de Porto Alegre; Brasil. University of California; Estados UnidosFil: Calderwood, Stuart K.. Harvard Medical School; Estados Unido
The anti-inflammatory mechanisms of Hsp70
Immune responses to heat shock proteins (Hsp) develop in virtually all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, Hsp administration can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory diseases, Hsp peptides have been shown to promote the production of anti-inflammatory cytokines, indicating immunoregulatory potential of Hsp. Therefore, the presence of immune responses to Hsp in inflammatory diseases can be seen as an attempt of the immune system to correct the inflammatory condition. Hsp70 can modulate inflammatory responses in models of arthritis, colitis and graft rejection, and the mechanisms underlying this effect are now being elucidated. Incubation with microbial Hsp70 was seen to induce tolerogenic dendritic cells (DCs) and to promote a suppressive phenotype in myeloid-derived suppressor cells and monocytes. These DC could induce regulatory T cells (Tregs), independently of the antigens they presented. Some Hsp70 family members are associated with autophagy, leading to a preferential uploading of Hsp70 peptides in MHC class II molecules of stressed cells. Henceforth, conserved Hsp70 peptides may be presented in these situations and constitute targets of Tregs, contributing to downregulation of inflammation. Finally, an interfering effect in multiple intracellular inflammatory signaling pathways is also known for Hsp70. Altogether it seems attractive to use Hsp70, or its derivative peptides, for modulation of inflammation. This is a physiological immunotherapy approach, without the immediate necessity of defining disease-specific auto-antigens. In this article, we present the evidence on anti-inflammatory effects of Hsp70 and discuss the need for experiments that will be crucial for the further exploration of the immunosuppressive potential of this protein
Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils
Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC- β2, PI3K, ERK, p38 and independent of Gαi protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095.We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders
March1-dependent modulation of donor MHC II on CD103+ dendritic cells mitigates alloimmunity.
In transplantation, donor dendritic cells (do-DCs) initiate the alloimmune response either by direct interaction with host T cells or by transferring intact donor MHC to host DCs. However, how do-DCs can be targeted for improving allograft survival is still unclear. Here we show CD103+ DCs are the major do-DC subset involved in the acute rejection of murine skin transplants. In the absence of CD103+ do-DCs, less donor MHC-II is carried to host lymph nodes, fewer allogenic T cells are primed and allograft survival is prolonged. Incubation of skin grafts with the anti-inflammatory mycobacterial protein DnaK reduces donor MHC-II on CD103+DCs and prolongs graft survival. This effect is mediated through IL-10-induced March1, which ubiquitinates and decreases MHC-II levels. Importantly, in vitro pre-treatment of human DCs with DnaK reduces their ability to prime alloreactive T cells. Our findings demonstrate a novel therapeutic approach to dampen alloimmunity by targeting donor MHC-II on CD103+DCs
Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype
Macrophages are myeloid cells that play an essential role in inflammation and host defense, regulating immune responses and maintaining tissue homeostasis. Depending on the microenvironment, macrophages can polarize to two distinct phenotypes. The M1 phenotype is activated by IFN-c and bacterial products, and displays an inflammatory profile, while M2 macrophages are activated by IL-4 and tend to be anti-inflammatory or immunosupressive. It was observed that DnaK from Mycobacterium tuberculosis has immunosuppressive properties, inducing a tolerogenic phenotype in dendritic cells and MDSCs, contributing to graft acceptance and tumor growth. However, its role in macrophage polarization remains to be elucidated. We asked whether DnaK was able to modulate macrophage phenotype. Murine macrophages, derived from bone marrow, or from the peritoneum, were incubated with DnaK and their phenotype compared to M1 or M2 polarized macrophages. Treatment with DnaK leads macrophages to present higher arginase I activity, IL-10 production and FIZZ1 and Ym1 expression. Furthermore, DnaK increased surface levels of CD206. Importantly, DnaK-treated macrophages were able to promote tumor growth in an allogeneic melanoma model. Our results suggest that DnaK polarizes macrophages to the M2-like phenotype and could constitute a virulence factor and is an important immunomodulator of macrophage responses
Pediatric COVID-19 patients in South Brazil show abundant viral mRNA and strong specific anti-viral responses
COVID-19 manifests as a milder disease in children than adults, but the underlying mechanisms are not fully characterized. Here we assess the difference in cellular or humoral immune responses of pediatric and adult COVID-19 patients to see if these factors contribute to the severity dichotomy. Children’s non-specific immune profile is dominated by naive lymphocytes and HLA-DRhighCX3CR1low dendritic cells; meanwhile, children show strong specific antibody and T cell responses for viral structural proteins, with their T cell responses differing from adults by having weaker CD8+TNF+ T cells responses to S peptide pool but stronger responses to N and M peptide pools. Finally, viral mRNA is more abundant in pediatric patients. Our data thus support a scenario in which SARS-CoV-2 infected children contribute to transmission yet are less susceptible to COVID-19 symptoms due to strong and differential responses to the virus
Prolonged Survival of Allografts Induced by Mycobacterial Hsp70 Is Dependent on CD4+CD25+ Regulatory T Cells
Background: Heat shock proteins (Hsps) are stress induced proteins with immunomodulatory properties. The Hsp70 of Mycobacterium tuberculosis (TBHsp70) has been shown to have an anti-inflammatory role on rodent autoimmune arthritis models, and the protective effects were demonstrated to be dependent on interleukin-10 (IL-10). We have previously observed that TBHsp70 inhibited maturation of dendritic cells (DCs) and induced IL-10 production by these cells, as well as in synovial fluid cells. Methodology/Principal Findings: We investigated if TBHsp70 could inhibit allograft rejection in two murine allograft systems, a transplanted allogeneic melanoma and a regular skin allograft. In both systems, treatment with TBHsp70 significantly inhibited rejection of the graft, and correlated with regulatory T cells (Tregs) recruitment. This effect was not tumor mediated because injection of TBHsp70 in tumor-free mice induced an increase of Tregs in the draining lymph nodes as well as inhibition of proliferation of lymph node T cells and an increase in IL-10 production. Finally, TBHsp70 inhibited skin allograft acute rejection, and depletion of Tregs using a monoclonal antibody completely abolished this effect. Conclusions/Significance: We present the first evidence for an immunosuppressive role for this protein in a graft rejection system, using an innovative approach - immersion of the graft tissue in TBHsp70 solution instead of protein injection. Also, this is the first study that demonstrates dependence on Treg cells for the immunosuppressive role of TBHsp70. This finding is relevant for the elucidation of the immunomodulatory mechanism of TBHsp70. We propose that this protein can be used not only for chronic inflammatory diseases, but is also useful for organ transplantation management.Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Financiadora de Estudos e Projetos (FINEP
Defining the Critical Hurdles in Cancer Immunotherapy
ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer
- …