88 research outputs found
Laccase activity from the fungus trametes hirsuta using an air-lift bioreactor
Aim: To produce high laccase activities from the white-rot fungus Trametes hirsuta in an in-house air-lift bioreactor (ALB).
Methods and Results: Trametes hirsuta was grown in a 6-l ALB. A fed-batch strategy with glycerol as an addition resulted in maximum laccase activity of 19 400 U l)1, which was the highest reported from the fungus.
Conclusion: The ALB configuration with additional glycerol resulted in high
laccase activities.
Significance and Impact of the Study: This study provides useful information on how to produce high concentrations of laccase.Fundação para a Ciência e a Tecnologia (FCT)University of Vigo (SpainDepartment of Biological Engineering of the University of Minho, Portuga
Legumes as food ingredient: characterization, processing, and applications
Editores: Jiménez-López, José Carlos (CSIC); Clemente, Alfonso (CSIC
Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi
Two families of peroxidases—lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)—are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of (14)CO(2) from (14)C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of (14)CO(2) release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini
Lactate and Amino Acid Catabolism in the Cheese-Ripening Yeast Yarrowia lipolyticaâ–¿
The consumption of lactate and amino acids is very important for microbial development and/or aroma production during cheese ripening. A strain of Yarrowia lipolytica isolated from cheese was grown in a liquid medium containing lactate in the presence of a low (0.1×) or high (2×) concentration of amino acids. Our results show that there was a dramatic increase in the growth of Y. lipolytica in the medium containing a high amino acid concentration, but there was limited lactate consumption. Conversely, lactate was efficiently consumed in the medium containing a low concentration of amino acids after amino acid depletion was complete. These data suggest that the amino acids are used by Y. lipolytica as a main energy source, whereas lactate is consumed following amino acid depletion. Amino acid degradation was accompanied by ammonia production corresponding to a dramatic increase in the pH. The effect of adding amino acids to a Y. lipolytica culture grown on lactate was also investigated. Real-time quantitative PCR analyses were performed with specific primers for five genes involved in amino acid transport and catabolism, including an amino acid transporter gene (GAP1) and four aminotransferase genes (ARO8, ARO9, BAT1, and BAT2). The expression of three genes involved in lactate transport and catabolism was also studied. These genes included a lactate transporter gene (JEN1) and two lactate dehydrogenase genes (CYB2-1 and CYB2-2). Our data showed that GAP1, BAT2, BAT1, and ARO8 were maximally expressed after 15 to 30 min following addition of amino acids (BAT2 was the most highly expressed gene), while the maximum expression of JEN1, CYB2-1, and CYB2-2 was delayed (≥60 min)
Effects of Proteus vulgaris growth on the establishment of a cheese microbial community and on the production of volatile aroma compounds in a model cheese.
The definitive version is available at ww3.interscience.wiley.comInternational audienceAims: To investigate the impact of Proteus vulgaris growth on a multispecies ecosystem and on volatile aroma compound production during cheese ripening. Methods and Results: The microbial community dynamics and the production of volatile aroma compounds of a nine-species cheese ecosystem were compared with or without the presence of P. vulgaris in the initial inoculum. Proteus vulgaris was able to colonize the cheese surface and it was one of the dominant species, representing 37% of total isolates at the end of ripening with counts of 9Æ2 log10 CFU g)1. In the presence of P. vulgaris, counts of Arthrobacter arilaitensis, Brevibacterium aurantiacum and Hafnia alvei significantly decreased. Proteus vulgaris influenced the production of total volatile aroma compounds with branched-chain aldehydes and their corresponding alcohols being most abundant. Conclusions: Proteus vulgaris was able to successfully implant itself in a complex cheese ecosystem and significantly contributed to the organoleptic properties of cheese during ripening. This bacterium also interacted negatively with other bacteria in the ecosystem studied. Significance and Impact of the Study: This is the first time that the impact of a Gram-negative bacteriu
Production, Identification, and Toxicity of (gamma)-Decalactone and 4-Hydroxydecanoic Acid from Sporidiobolus spp
During the bioconversion of ricinoleic acid to (gamma)-decalactone under controlled pH conditions, Sporidiobolus salmonicolor produced only the lactone form, while Sporidiobolus ruinenii produced both the lactone form and a precursor. By using gas chromatography-mass spectrometry and gas chromatography-Fourier transform infrared analysis techniques, the precursor was identified as 4-hydroxydecanoic acid. The levels of production in the presence of high concentrations of ricinoleic acid methyl ester differed in the two Sporidiobolus species. This difference was due on the one hand to the high sensitivity of S. salmonicolor to the lactone and on the other hand to the high level of 4-hydroxydecanoic acid produced by S. ruinenii. 4-Hydroxydecanoic acid is much less toxic to the microorganisms than the lactone. In contrast to S. ruinenii, S. salmonicolor is not able to catabolize 4-hydroxydecanoic acid
- …