1,992 research outputs found

    Evidence of several dipolar quasi-invariants in Liquid Crystals

    Get PDF
    In a closed quantum system of N coupled spins with magnetic quantum number I, there are about (2I + 1)^N constants of motion. However, the possibility of observing such quasi-invariant (QI) states in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several QI, in the proton NMR of small spin clusters, besides those already known Zeeman, and dipolar orders (strong and weak). We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks. We observe that the signals can be explained with two dipolar QIs only within a range of short preparation times. At longer times the time-domain signals have an echo-like behaviour. We study their multiple quantum coherence content on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Then we show that the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple QI which we isolate experimentally

    Development of dry coal feeders

    Get PDF
    Design and fabrication of equipment of feed coal into pressurized environments were investigated. Concepts were selected based on feeder system performance and economic projections. These systems include: two approaches using rotating components, a gas or steam driven ejector, and a modified standpipe feeder concept. Results of development testing of critical components, design procedures, and performance prediction techniques are reviewed

    Measurement of dynamic Stark polarizabilities by analyzing spectral lineshapes of forbidden transitions

    Full text link
    We present a measurement of the dynamic scalar and tensor polarizabilities of the excited state 3D1 in atomic ytterbium. The polarizabilities were measured by analyzing the spectral lineshape of the 408-nm 1S0->3D1 transition driven by a standing wave of resonant light in the presence of static electric and magnetic fields. Due to the interaction of atoms with the standing wave, the lineshape has a characteristic polarizability-dependent distortion. A theoretical model was used to simulate the lineshape and determine a combination of the polarizabilities of the ground and excited states by fitting the model to experimental data. This combination was measured with a 13% uncertainty, only 3% of which is due to uncertainty in the simulation and fitting procedure. The scalar and tensor polarizabilities of the state 3D1 were measured for the first time by comparing two different combinations of polarizabilities. We show that this technique can be applied to similar atomic systems.Comment: 13 pages, 7 figures, submitted to PR

    Attosecond tracking of light absorption and refraction in fullerenes

    Full text link
    The collective response of matter is ubiquitous and widely exploited, e.g. in plasmonic, optical and electronic devices. Here we trace on an attosecond time scale the birth of collective excitations in a finite system and find distinct new features in this regime. Combining quantum chemical computation with quantum kinetic methods we calculate the time-dependent light absorption and refraction in fullerene that serve as indicators for the emergence of collective modes. We explain the numerically calculated novel transient features by an analytical model and point out the relevance for ultra-fast photonic and electronic applications. A scheme is proposed to measure the predicted effects via the emergent attosecond metrology.Comment: 11 pages, 3 figures, accepted in Phys. Rev.

    State-insensitive trapping of Rb atoms: linearly versus circularly polarized lights

    Full text link
    We study the cancellation of differential ac Stark shifts in the 5s and 5p states of rubidium atom using the linearly and circularly polarized lights by calculating their dynamic polarizabilities. Matrix elements were calculated using a relativistic coupled-cluster method at the single, double and important valence triple excitations approximation including all possible non-linear correlation terms. Some of the important matrix elements were further optimized using the experimental results available for the lifetimes and static polarizabilities of atomic states. "Magic wavelengths" are determined from the differential Stark shifts and results for the linearly polarized light are compared with the previously available results. Possible scope of facilitating state-insensitive optical trapping schemes using the magic wavelengths for circularly polarized light are discussed. Using the optimized matrix elements, the lifetimes of the 4d and 6s states of this atom are ameliorated.Comment: 13 pages, 13 tables and 4 figure

    Quasi-equilibrium states in thermotropic liquid crystals studied by multiple quantum NMR

    Get PDF
    We study the nature of the quasiinvariants in nematic 5CB and measure their relaxation times by encoding the multiple quantum coherences of the states following the JB pulse pair on two orthogonal bases, Z and X. The experiments were also performed in powder adamantane at 301 K which is used as a reference compound having only one dipolar quasiinvariant. We show that the evolution of the quantum states during the build up of the quasi-equilibrium state in 5CB prepared under the S condition is similar to the case of adamantane and that their quasi-equilibrium density operators have the same tensor structure. In contrast, the second constant of motion, whose explicit operator form is not known, involves a richer composition of multiple quantum coherences on the X basis of even order, in consistency with the truncation inherent in its definition. We exploited the exclusive presence coherences 4, 6, 8, besides 0 and 2 under the W condition to measure the spin-lattice relaxation time T_{W} accurately, so avoiding experimental difficulties that usually impair dipolar order relaxation measurement such as Zeeman contamination at high fields, and also superposition of the different quasiinvariants. This procedure opens the possibility of measuring the spin-lattice relaxation of a quasiinvariant independent of the Zeeman and S reservoirs, so incorporating a new relaxation parameter useful for studying the complex molecular dynamics in mesophases. In fact, we report the first measurement of T_{W} in a liquid crystal at high magnetic fields. The comparison of the obtained value with the one corresponding to a lower field (16 MHz) points out that the relaxation of the W-order strongly depends on the intensity of the external magnetic field, similarly to the case of the S reservoir, indicating that the relaxation of the W-quasiinvariant is also governed by the cooperative molecular motions.Comment: 7 figures. http://www.famaf.unc.edu.ar/series/AFis2005.ht
    corecore