6,361 research outputs found

    Multiquantum well spin oscillator

    Full text link
    A dc voltage biased II-VI semiconductor multiquantum well structure attached to normal contacts exhibits self-sustained spin-polarized current oscillations if one or more of its wells are doped with Mn. Without magnetic impurities, the only configurations appearing in these structures are stationary. Analysis and numerical solution of a nonlinear spin transport model yield the minimal number of wells (four) and the ranges of doping density and spin splitting needed to find oscillations.Comment: 11 pages, 2 figures, shortened and updated versio

    Chaos in resonant-tunneling superlattices

    Full text link
    Spatio-temporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.Comment: 3 pages, LaTex, RevTex, 3 uuencoded figures (1.2M) are available upon request from [email protected], to appear in Phys.Rev.

    Chaotic motion of space charge wavefronts in semiconductors under time-independent voltage bias

    Full text link
    A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistivity and applied voltage - such that the sample is biased in a regime of negative differential resistance - we find chaos in the propagation of nonlinear fronts (charge monopoles of alternating sign) of electric field. The chaos is always low-dimensional, but has a complex spatial structure; this behavior can be interpreted using a finite dimensional asymptotic model in which the front (charge monopole) positions and the electrical current are the only dynamical variables.Comment: 12 pages, 8 figure

    Magnetoswitching of current oscillations in diluted magnetic semiconductor nanostructures

    Get PDF
    Strongly nonlinear transport through Diluted Magnetic Semiconductor multiquantum wells occurs due to the interplay between confinement, Coulomb and exchange interaction. Nonlinear effects include the appearance of spin polarized stationary states and self-sustained current oscillations as possible stable states of the nanostructure, depending on its configuration and control parameters such as voltage bias and level splitting due to an external magnetic field. Oscillatory regions grow in size with well number and level splitting. A systematic analysis of the charge and spin response to voltage and magnetic field switching of II-VI Diluted Magnetic Semiconductor multiquantum wells is carried out. The description of stationary and time-periodic spin polarized states, the transitions between them and the responses to voltage or magnetic field switching have great importance due to the potential implementation of spintronic devices based on these nanostructures.Comment: 14 pages, 4 figures, Revtex, to appear in PR

    Stationary states and phase diagram for a model of the Gunn effect under realistic boundary conditions

    Get PDF
    A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly stablished.Comment: 10 pages, 6 Post-Script figure

    Effects of disorder on the wave front depinning transition in spatially discrete systems

    Get PDF
    Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of nonlinear oscillators with nearest-neighbor coupling and subject to random external forces. The presence of weak randomness shrinks the pinning interval and it changes the critical exponent of the wave front depinning transition from 1/2 to 3/2. This effect is derived by means of a recent asymptotic theory of the depinning transition, extended to discrete drift-diffusion models of transport in semiconductor superlattices and confirmed by numerical calculations.Comment: 4 pages, 3 figures, to appear as a Rapid Commun. in Phys. Rev.

    Effects of noise on hysteresis and resonance width in graphene and nanotubes resonators

    Get PDF
    We investigate the role that noise plays in the hysteretic dynamics of a suspended nanotube or a graphene sheet subject to an oscillating force. We find that not only the size but also the position of the hysteresis region in these systems can be controlled by noise. We also find that nano-resonators act as noise rectifiers: by increasing the noise in the setup, the resonance width of the characteristic peak in these systems is reduced and, as a result, the quality factor is increased.Comment: 15 pages, 6 figures. Sent to PRB (in revision

    Chapman-Enskog method and synchronization of globally coupled oscillators

    Full text link
    The Chapman-Enskog method of kinetic theory is applied to two problems of synchronization of globally coupled phase oscillators. First, a modified Kuramoto model is obtained in the limit of small inertia from a more general model which includes ``inertial'' effects. Second, a modified Chapman-Enskog method is used to derive the amplitude equation for an O(2) Takens-Bogdanov bifurcation corresponding to the tricritical point of the Kuramoto model with a bimodal distribution of oscillator natural frequencies. This latter calculation shows that the Chapman-Enskog method is a convenient alternative to normal form calculations.Comment: 7 pages, 2-column Revtex, no figures, minor change
    corecore