1,177 research outputs found

    On the AGN radio luminosity distribution and the black hole fundamental plane

    Full text link
    We have studied the dependence of the AGN nuclear radio (1.4 GHz) luminosity on both the AGN 2-10 keV X-ray and the host-galaxy K-band luminosity. A complete sample of 1268 X-ray selected AGN (both type 1 and type 2) has been used, which is the largest catalogue of AGN belonging to statistically well defined samples where radio, X and K band information exists. At variance with previous studies, radio upper limits have been statistically taken into account using a Bayesian Maximum Likelihood fitting method. It resulted that a good fit is obtained assuming a plane in the 3D L_R-L_X-L_K space, namely logL_R= xi_X logL_X + xi_K logL_K + xi_0, having a ~1 dex wide (1 sigma) spread in radio luminosity. As already shown, no evidence of bimodality in the radio luminosity distribution was found and therefore any definition of radio loudness in AGN is arbitrary. Using scaling relations between the BH mass and the host galaxy K-band luminosity, we have also derived a new estimate of the BH fundamental plane (in the L_5GHz -L_X-M_BH space). Our analysis shows that previous measures of the BH fundamental plane are biased by ~0.8 dex in favor of the most luminous radio sources. Therefore, many AGN studies, where the BH fundamental plane is used to investigate how AGN regulate their radiative and mechanical luminosity as a function of the accretion rate, or many AGN/galaxy co-evolution models, where radio-feedback is computed using the AGN fundamental plane, should revise their conclusions.Comment: Submitted to MNRAS. Revised version after minor referee comments. 12 pages, 12 figure

    A full descriptive definition of the BV-integral

    Get PDF
    summary:We present a Cauchy test for the almost derivability of additive functions of bounded BV sets. The test yields a full descriptive definition of a coordinate free Riemann type integral

    Analysis of the Parameters Affecting the Stiffness of Short Sisal Fiber Biocomposites Manufactured by Compression-Molding

    Get PDF
    The use of natural fiber-based composites is on the rise in many industries. Thanks to their eco-sustainability, these innovative materials make it possible to adapt the production of components, systems and machines to the increasingly stringent regulations on environmental protection, while at the same time reducing production costs, weight and operating costs. Optimizing the mechanical properties of biocomposites is an important goal of applied research. In this work, using a new numerical approach, the effects of the volume fraction, average length, distribution of orientation and curvature of fibers on the Young’s modulus of a biocomposite reinforced with short natural fibers were studied. Although the proposed approach could be applied to any biocomposite, sisal fibers and an eco-sustainable thermosetting matrix (green epoxy) were considered in both simulations and the associated experimental assessment. The results of the simulations showed the following effects of the aforementioned parameters on Young’s modulus: a linear growth with the volume fraction, nonlinear growth as the length of the fibers increased, a reduction as the average curvature increased and an increase in stiffness in the x-y plane as the distribution of fiber orientation in the z direction decreased

    The rest-frame UV-to-optical spectroscopy of APM 08279+5255 - BAL classification and black hole mass estimates

    Get PDF
    We present the analysis of the rest-frame optical-to-UV spectrum of APM 08279+5255, a well-known lensed broad absorption line (BAL) quasar at z=3.911z = 3.911. The spectroscopic data are taken with the optical DOLoRes and near-IR NICS instruments at TNG, and include the previously unexplored range between C III] λ\lambda1910 and [O III] λλ\lambda\lambda4959,5007. We investigate the possible presence of multiple BALs by computing "balnicity" and absorption indexes (i.e. BI, BI0_0 and AI) for the transitions Si IV λ\lambda1400, C IV λ\lambda1549, Al III λ\lambda1860 and Mg II λ\lambda2800. No clear evidence for the presence of absorption features is found in addition to the already known, prominent BAL associated to C IV, which supports a high-ionization BAL classification for APM 08279+5255. We also study the properties of the [O III], Hβ\beta and Mg II emission lines. We find that [O III] is intrinsically weak (F[OIII]/FHβ≲0.04F_{\rm [OIII]}/F_{\rm H\beta} \lesssim 0.04), as it is typically found in luminous quasars with a strongly blueshifted C IV emission line (∼\sim2500 km s−1^{-1} for APM 08279+5255). We compute the single-epoch black hole mass based on Mg II and Hβ\beta broad emission lines, finding MBH=(2÷3)×1010μ−1M_{\rm BH} = (2 \div 3) \times 10^{10}\mu^{-1} M⊙_\odot, with the magnification factor μ\mu that can vary between 4 and 100 according to CO and rest-frame UV-to-mid-IR imaging respectively. Using a Mg II equivalent width (EW)-to-Eddington ratio relation, the EWMgII∼27_{\rm MgII} \sim 27 \AA\ measured for APM 08279+5255 translates into an Eddington ratio of ∼\sim0.4, which is more consistent with μ=4\mu=4. This magnification factor also provides a value of MBHM_{\rm BH} that is consistent with recent reverberation-mapping measurements derived from C IV and Si IV.Comment: 10 pages, 4 figures, 4 tables, accepted for publication in A&

    Canaryseed (Phalaris canariensis L.) accessions from nineteen countries show useful genetic variation for agronomic traits

    Get PDF
    Fifty-seven accessions of canaryseed (47 populations and 10 cultivars) from 19 countries were evaluated for agronomic traits in four field trials sown over 3 yr in the province of Buenos Aires, Argentina. Genetic variation was found for all traits scored: grain yield and its components (grain weight, grain number per square meter, grain number per head and head number per square meter), harvest index, percent lodging, and phenological characters (emergence to heading, emergence to harvest maturity and heading to harvest maturity). Although genotype×environment interaction was observed for all traits, the additive differences between accessions were sufficient to enable promising breeding materials to be identified. Accessions superior in performance to the local Argentinean population, which in general gave values close to the overall mean of the accessions evaluated, were identified. For example, a population of Moroccan origin gave good yield associated with elevated values of the highly heritable character grain weight, rather than with the more commonly observed grain number per square meter. This population was also of relatively short stature and resistant to lodging, and, although it performed best when sown within the normal sowing date, tolerated late sowing fairly well. Other accessions were also observed with high grain weight, a useful characteristic in itself, since large grains are desirable from a quality point of view. Regarding phenology, the accessions showed a range of 160 degree days (8 calendar days in our conditions) in maturity, which, while not large in magnitude, may be of some utility in crop rotation management. Some accessions were well adapted to late sowing. Grain yield in general was strongly correlated with grain number per square meter. Principal components analysis (PCA) carried out for all characteristics provided indications of accessions combining useful characteristics and identified three components that explained approximately 70% of the phenotypic variation. Furthermore, a second PCA plus regression showed that approximately 60% of the variation in grain yield could be explained by a component associated with harvest index and grain number per square meter. Pointers were provided to possible future breeding targets

    The WISSH quasars Project: II. Giant star nurseries in hyper-luminous quasars

    Get PDF
    Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the ISM. In order to gain further insights on this process, we study the SEDs of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is supposed to be at its maximum. We model the rest-frame UV-to-FIR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 < z < 4.6 disentangling the different emission components and deriving physical parameters of both the nuclear component and the host galaxy. We also use a radiative transfer code to account for the contribution of the quasar-related emission to the FIR fluxes. Most SEDs are well described by a standard combination of accretion disk+torus and cold dust emission. However, about 30% of them require an additional emission component in the NIR, with temperatures peaking at 750K, which indicates the presence of a hotter dust component in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 10^47 erg/s) and SFR (up to 2000 Msun/yr). A new relation between quasar and star-formation luminosity is derived (LSF propto LQSO^(0.73)) by combining several Herschel-detected quasar samples from z=0 to 4. Future observations will be crucial to measure the molecular gas content in these systems, probe the impact between quasar-driven outflows and on-going star-formation, and reveal the presence of merger signatures in their host galaxies.Comment: 19 pages, 12 figures; Accepted for publication in Astronomy & Astrophysics on June 13, 201

    Physical properties of AGN host galaxies as a probe of SMBH feeding mechanisms

    Get PDF
    Using an advanced semi analytic model (SAM) for galaxy formation, we have investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We have considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where such an activity is triggered by galaxy mergers and fly-by events (interactions, IT). We obtained the following results:i) for hosts with M∗≲1011M⨀M_* \lesssim 10^{11} M_{\bigodot}, both DI and IT modes are able to account for the observed AGN hosts stellar mass function; for more massive hosts, the DI scenario predicts a lower space density than the IT model, lying below the observational estimates for z>0.8.ii) The analysis of the color-magnitude diagram (CMD) of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively discriminate between the DI and IT mode, since DIs are expected to yield AGN host galaxy colors skewed towards bluer colors, while in the IT scenario the majority of hosts are expected to reside in the red sequence.iii) While both IT and DI scenarios can account for AGN triggered in main sequence or starburst galaxies, DIs fail in triggering AGN activity in passive galaxies.iv) The two modes are characterized by a different duration of the AGN phase, with DIs lasting even on time scales ∼\sim Gyr, much longer with respect to the IT scenario.v) The scatter of the SFR−LbolSFR-L_{bol} relation could represent another crucial diagnostics to discriminate between the two triggering modes, since the DI scenario predicts an appreciably lower scatter of the relation than the IT scenario. vi) Disk instabilities are not able to account for the observed fraction of AGN in groups for z < 1 and clusters for z < 0.7, while the IT scenario provides a good match to observational data.Comment: Paper accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysic
    • …
    corecore