2,982 research outputs found

    Identification of parameter matrices using estimated FRF variation

    Get PDF
    This study presents an analytical method to predict the dynamic parameters of actual structure from measured FRF (Frequency Response Function) data. The inconsistency due to modeling errors between the actual structure and the finite element model exists. The number of measured data is less than the one of a full set of dofs and should be expanded to estimate the parameters. Considering that the stiffness and mass matrices are related with the real part of the expanded FRF data and the damping matrix with the imaginary part, the variation in the parameter matrices is evaluated. A numerical example evaluates the appropriateness of the proposed method

    Damage detection based on the internal force or deformation variation

    Get PDF
    The presence of damage in an intact structure leads to the change in internal force and deformation due to stiffness deterioration in the region of damage. This study proposes modelbased damage detection methods by deriving the mathematical formulation to describe such changes. The force and deformation variations between the undamaged and damaged systems are derived by minimizing the variation in dynamic strain energy with respect to the internal force and deformation vectors, respectively. They are expressed by the product of a coefficient matrix and the external force vector, and the product of a coefficient matrix and the displacement vector, respectively. Taking singular value decomposition (SVD) on the coefficient matrices of rank-deficiency, this study identifies the damaged elements as belonging to the set of elements whose internal forces or deformations between two adjacent nodes of finite element model are not changed. The validity of the proposed methods is illustrated in a simple application

    Solution structure and p43 binding of the p38 leucine zipper motif: coiled-coil interactions mediate the association between p38 and p43

    Get PDF
    Abstractp38, which has been suggested to be a scaffold protein for the assembly of a macromolecular tRNA synthetase complex, contains a leucine zipper-like motif. To understand the importance of the leucine zipper-like motif of p38 (p38LZ) in macromolecular assembly, the p38LZ solution structure was investigated by circular dichroism and nuclear magnetic resonance spectroscopy. The solution structure of p38LZ showed an amphipathic α-helical structure and characteristics similar to a coiled-coil motif. The protein–protein interaction mediated by p38LZ was examined by an in vitro binding assay. The p43 protein, another non-synthetase component of the complex, could bind to p38LZ via its N-terminal domain, which is also predicted to have a potential coiled-coil motif. Thus, we propose that the p38–p43 complex would be formed by coiled-coil interactions, and the formation of the binary complex would facilitate the macromolecular assembly of aminoacyl-tRNA synthetases

    Strangeness-driven Exploration in Multi-Agent Reinforcement Learning

    Full text link
    Efficient exploration strategy is one of essential issues in cooperative multi-agent reinforcement learning (MARL) algorithms requiring complex coordination. In this study, we introduce a new exploration method with the strangeness that can be easily incorporated into any centralized training and decentralized execution (CTDE)-based MARL algorithms. The strangeness refers to the degree of unfamiliarity of the observations that an agent visits. In order to give the observation strangeness a global perspective, it is also augmented with the the degree of unfamiliarity of the visited entire state. The exploration bonus is obtained from the strangeness and the proposed exploration method is not much affected by stochastic transitions commonly observed in MARL tasks. To prevent a high exploration bonus from making the MARL training insensitive to extrinsic rewards, we also propose a separate action-value function trained by both extrinsic reward and exploration bonus, on which a behavioral policy to generate transitions is designed based. It makes the CTDE-based MARL algorithms more stable when they are used with an exploration method. Through a comparative evaluation in didactic examples and the StarCraft Multi-Agent Challenge, we show that the proposed exploration method achieves significant performance improvement in the CTDE-based MARL algorithms.Comment: 9 pages, 7 figure

    Improvement in the hygroscopicity of inorganic binder through a dual coating process

    Get PDF
    The use of an anti-absorbent is proposed in this work to reduce the hygroscopicity of the inorganic binder in the casting mold, in which the anti-absorbent is coated on the mold prepared with an inorganic binder. Three types of polymers were used to select material with optimal water resistance. Polystyrene (PS) and polyvinyl alcohol (PVA) were used as a water-insoluble polymer and water-soluble polymer, respectively. In addition, polyurethane (PU) prepolymer has intermediate properties between PS and PVA. PVA and PU prepolymer were used for comparative testing with PS. For this testing process, the prepared green body was dipped into a solution of inorganic binder precursor mixed with tetraethyl orthosilicate (TEOS, SiO2 precursor) and sodium methoxide (NaOMe, Na2O precursor), and then dipped into a solution of coating reagent after a drying process. Thus, these series of coating processes in a green body is called a dual coating process. Finally the sample was heat-treated at 1000 °C to generate a glass phase by an organic–inorganic conversion process. In the sample prepared with PS, the highest contact angle and a high firing strength were exhibited, independent of polymer concentration, while the sample coated with PVA showed lower green and firing strengths. When prepolymer, PU, was applied, the green strength was remarkably improved, showing lower firing strength compared with that of PS. The green and firing strengths were optimized through the dual coating process with PS. Moreover, the moisture-proof effect of the dual coating process was verified through the moisture steam test

    CerebraI Aneurysm Associated with AduIt PIoycystic Kidney Disease -Report of 2 Cases-

    Get PDF
    Two Cases of ruptured cerebral aneurysms associated with polycystic kidney diseases (PKD) are presented. Case 1 is a 60-year-old woman diagnosed as PKD after rupture of an anterior communicating artery aneurysm. Eleven days after successful aneurysmal clipping, she died of sudden massive intra-abdominal bleeding from kidney rupture. Case 2 is a 60-year-old man diagnosed as aneurysmal rupture 15 years after diagnosis of PKD. After anterior and posterior communicating artery aneurysms were clipped he recovered well. Since cerebral aneurysms is far more prevalent in patients with PKD than in the general population and aneurysm rupture is a leading cause of death, screening of the aneurysm by digital subtraction angiography or magnetic resonance angiography and prophylactic surgery of the aneurysm should be done

    Thymic Metastasis in Breast Cancer: A Case Report

    Get PDF
    A malignant tumor is generally believed to be very unlikely to metastasize to the thymus. Only three cases of thymic metastases have been reported so far in the medical literature. We report here a rare case of metastatic breast cancer to the thymus, which was detected by CT and PET scanning, and the metastasis was also confirmed by video-assisted thoracic surgery biopsy. Recognition of an unusual breast cancer metastasis, such as to the thymus, as well as the usual patterns of breast cancer metastasis will facilitate an accurate, prompt diagnosis and its appropriate treatment

    Effect of Phosphatidylserine on Unitary Conductance and Ba2+ Block of the BK Ca2+–activated K+ Channel: Re-examination of the Surface Charge Hypothesis

    Get PDF
    Incorporation of BK Ca2+–activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely dependent on KCl concentration, decreasing from 70% at 10 mM KCl to 8% at 1,000 mM KCl. This effect was explained previously by a surface charge hypothesis (Moczydlowski, E., O. Alvarez, C. Vergara, and R. Latorre. 1985. J. Membr. Biol. 83:273–282), which attributed the conductance enhancement to an increase in local K+ concentration near the entryways of the channel. To test this hypothesis, we measured the kinetics of block by external and internal Ba2+, a divalent cation that is expected to respond strongly to changes in surface electrostatics. We observed little or no effect of PS on discrete blocking kinetics by external and internal Ba2+ at 100 mM KCl and only a small enhancement of discrete and fast block by external Ba2+ in PS-containing membranes at 20 mM KCl. Model calculations of effective surface potential sensed by the K+ conduction and Ba2+-blocking reactions using the Gouy-Chapman-Stern theory of lipid surface charge do not lend support to a simple electrostatic mechanism that predicts valence-dependent increase of local cation concentration. The results imply that the conduction pore of the BK channel is electrostatically insulated from the lipid surface, presumably by a lateral distance of separation (>20 Å) from the lipid head groups. The lack of effect of PS on apparent association and dissociation rates of Ba2+ suggest that lipid modulation of K+ conductance is preferentially coupled through conformational changes of the selectivity filter region that determine the high K+ flux rate of this channel relative to other cations. We discuss possible mechanisms for the effect of anionic lipids in the context of specific molecular interactions of phospholipids documented for the KcsA bacterial potassium channel and general membrane physical properties proposed to regulate membrane protein conformation via energetics of bilayer stress
    corecore