35 research outputs found

    Long-Term Solar Variability and the Solar Cycle in the 21st Century

    Get PDF
    We have examined the long-term trends in the solar variability that can be deduced from some indirect data and from optical records. We analyzed the radiocarbon measurements for the last 4500 years, based on dendrochronology, the Schove series for the last 1700 years, based on auroral records, and the Hoyt-Schatten series of group sunspot numbers. Focusing on periodicities near one and two centuries, which most likely have a solar origin, we conclude that the present epoch is at the onset of an upcoming local minimum in the long-term solar variability. There are some clues that the next minimum will be less deep than the Maunder minimum, but ultimately the relative depth between these two minima will be indicative of the amplitude change of the quasi-two-century solar cycle

    A comprehensive study of infrared OH prompt emission in two comets. I. Observations and effective g-factors

    Get PDF
    We present high-dispersion infrared spectra of hydroxyl (OH) in comets C/2000 WM1 (LINEAR) and C/2004 Q2 (Machholz), acquired with the Near Infrared Echelle Spectrograph at the Keck Observatory atop Mauna Kea, Hawaii. Most of these rovibrational transitions result from photodissociative excitation of H_2O giving rise to OH "prompt" emission. We present calibrated emission efficiencies (equivalent g-factors, measured in OH photons s^(-1) [H_2O molecule]^(-1)) for more than 20 OH lines sampled in these two comets. The OH transitions analyzed cover a broad range of rotational excitation. This infrared database for OH can be used in two principal ways: (1) as an indirect tool for obtaining water production in comets simultaneously with the production of other parent volatiles, even when direct detections of H_2O are not available; and (2) as an observational constraint to models predicting the rotational distribution of rovibrationally excited OH produced by water photolysis

    Highly Depleted Ethane and Slightly Depleted Methanol in Comet 21P/Giacobini-Zinner: Application of Empirical g-Factors for CH3OH Near 50K

    Get PDF
    We report high resolution (lambda/delta lambda approximately 24,000) observations of Comet 21 P/Giacobini-Zinner (21P) between approximately 2.85 -- 3.54 micrometers, obtained with NIRSPEC at Keck 2 on UT 2005 June 03 (R(sub h) = 1.12 AU, delta = 1.45 AU). These simultaneously sampled multiple emissions from the v7 band of C2H6 and the v2 and v3 bands of CH3OH, together with several hot bands of H2O, permitting a direct measure of parent volatile abundances in 21P. Our spectra reveal highly depleted C2H6 (0.13-0.14 percent relative to H2O) and CH3OH/C2H6 approximately 10, consistent with previously published abundances from observations in the IR [1,2] and millimeter sub-mm (reporting CH3OH/H2O [3]) during its previous apparition in 1998. We observed similarly high CH3OH/C2H6, and also similar rotational temperature to that measured for 21 P, in Comet 8P/Tuttle [4,5]. We used our (higher signal-to-noise) NIRSPEC observations of 8P to produce effective (empirical) CH3OH g-factors for several lines in the v2 band. These will be presented together with interpretation of our results, including constraints on the spin temperature of water. We acknowledge support from the NASA Planetary Atmospheres, Planetary Astronomy, and Astrobiology Programs and from the NSF Astronomy and Astrophysics Research Grants Program

    IRCS/Subaru Observations of Water in the Inner Coma of Comet 73P-B/Schwassmann-Wachmann 3: Spatially Resolved Rotational Temperatures and Ortho-Para Ratios

    Full text link
    Comet 73P-B/Schwassmann-Wachmann 3 was observed with IRCS/Subaru at geocentric distance of 0.074 AU on UT 10 May 2006. Multiple H2O emission lines were detected in non-resonant fluorescence near 2.9 microns. No significant variation in total H2O production rate was found during the (3 hour) duration of our observations. H2O rotational temperatures and ortho-to-para abundance ratios were measured for several positions in the coma. The temperatures extracted from two different time intervals show very similar spatial distributions. For both, the rotational temperature decreased from ~110 K to ~90 K as the projected distance from the nucleus increased from ~5 to ~30 km. We see no evidence for OPR change in the coma. The H2O ortho-para ratio is consistent with the statistical equilibrium value (3.0) for all spatially resolved measurements. This implies a nuclear spin temperature higher than ~ 45 K.Comment: accepted for Icaru

    The Volatile Composition of the Split Ecliptic comet 73P/Schwassmann-Wachmann 3: A Comparison of Fragments C and B

    Get PDF
    The composition of fragments C and B of the Jupiter-family comet 73P/Schwassmann-Wachmann 3 (SW3) was investigated in early April of 2006 at IR wavelengths using high-dispersion echelle spectroscopy. Both fragments were depleted in ethane, and C was depleted in most forms of volatile carbon. In particular, fragment C shows a severe depletion of CH_(3)OH but a "normal" abundance of HCN (which has a similar volatility). Thermal processing is a possible explanation, but since fragment B is perhaps sublimating fresher material because of the frequent outbursts and fragmentation, the observed depletions might have cosmogonic implications. The chemistry of the volatile ices in SW3, like in the Oort Cloud comet C/1999 S4 (LINEAR), may be associated with sublimation of icy mantles from precometary grains followed by subsequent gas-phase chemistry and recondensation

    Comet C/2004 Q2 (MACHHOLZ): Parent Volatiles, a Search for Deuterated Methane, and Constraint on the CH4 Spin Temperature

    Get PDF
    High-dispersion (l/dl ~ 25,000) infrared spectra of Comet C/2004 Q2 (Machholz) were acquired on Nov. 28-29, 2004, and Jan. 19, 2005 (UT dates) with NIRSPEC at the Keck-2 telescope on Mauna Kea. We detected H2O, CH4, C2H2, C2H6, CO, H2CO, CH3OH, HCN, and NH3 and we conducted a sensitive search for CH3D. We report rotational temperatures, production rates, and mixing ratios (with respect to H2O) at heliocentric distances of 1.49 AU (Nov. 2004) and 1.21 AU (Jan. 2005). We highlight three principal results: (1) The mixing ratios of parent volatiles measured at 1.49 AU and 1.21 AU agree within confidence limits, consistent with homogeneous composition in the mean volatile release from the nucleus of C/2004 Q2. Notably, the relative abundance of C2H6/C2H2 is substantially higher than those measured in other comets, while the mixing ratios C2H6/H2O, CH3OH/H2O, and HCN/H2O are similar to those observed in comets, referred to as "organics-normal". (2) The spin temperature of CH4 is > 35-38 K, an estimate consistent with the more robust spin temperature found for H2O. (3) We obtained a 3s upper limit of CH3D/CH4 < 0.020 (D/H < 0.005). This limit suggests that methane released from the nucleus of C/2004 Q2 is not dominated by a component formed in extremely cold (near 10 K) environments. Formation pathways of both interstellar and nebular origin consistent with the measured D/H in methane are discussed. Evaluating the relative contributions of these pathways requires further modeling of chemistry including both gas-phase and gas-grain processes in the natal interstellar cloud and in the protoplanetary disk.Comment: Accepted by The Astrophysical Journa

    A Search for Variation in the H_2O Ortho-Para Ratio and Rotational Temperature in the Inner Coma of Comet C/2004 Q2 (Machholz)

    Get PDF
    We present spatially resolved measurements of the rotational temperature and ortho-para ratio for H_2O in the inner coma of the Oort Cloud comet C/2004 Q2 (Machholz). Our results are based on direct simultaneous detections of ortho-H_2O and para-H_2O via "hot-band" fluorescence near 2.9 Ī¼m. We find a well-defined decline in rotational temperature with increasing nucleocentric distance (up to ~1000 km). The ortho-para ratio remains constant (within stochastic uncertainty) with increasing nucleocentric distance and is close to the statistical equilibrium value of 3.0 (2.86 Ā± 0.06 [0.17], including, respectively, stochastic [systematic] uncertainty), resulting in spin temperature T_(spin) ā‰„ 34 K. We compare the present results with those reported for other comets and discuss the difficulties in interpreting spin temperatures deduced from measured ortho-para ratios. Improved understanding of the special conditions that enable nuclear spin conversion would test the extent to which derived spin temperatures reflect the formative history or the processing record of cometary ices

    High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    Get PDF
    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets

    The Peculiar Volatile Composition of Comet 8P/Tuttle: A Contact Binary of Chemically Distinct Cometesimals?

    Full text link
    We report measurements of eight native (i.e., released directly from the comet nucleus) volatiles (H2O, HCN, CH4, C2H2, C2H6, CO, H2CO, and CH3OH) in comet 8P/Tuttle using NIRSPEC at Keck 2. Comet Tuttle reveals a truly unusual composition, distinct from that of any comet observed to date at infrared wavelengths. The prominent enrichment of methanol relative to water contrasts the depletions of other molecules, especially C2H2 and HCN. We suggest that the nucleus of 8P/Tuttle may contain two cometesimals characterized by distinct volatile composition. The relative abundances C2/CN, C2/OH, and CN/OH in 8P/Tuttle (measured at optical/near-UV wavelengths) differ substantially from the mixing ratios of their potential parents (C2H2/HCN, C2H2/H2O, and HCN/H2O) found in this work. Based on this comparison, our results do not support C2H2 and HCN being the principal precursors for respectively C2 and CN in Tuttle. The peculiar native composition observed in 8P/Tuttle (compared to other comets) provides new strong evidence for chemical diversity in the volatile materials stored in comet nuclei. We discuss the implications of this diversity for expected variations in the deuterium enrichment of water among comets.Comment: Accepted for Astrophysical Journal Letter

    Pre- and Post-perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-rich Heritage?

    Get PDF
    We conducted pre- and post-perihelion observations of Comet C/2009 P1 (Garradd) on UT 2011 October 13 and 2012 January 8, at heliocentric distances of 1.83 and 1.57 AU, respectively, using the high-resolution infrared spectrometer (NIRSPEC) at the Keck II 10-m telescope on Mauna Kea, HI. Pre-perihelion, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. Post-perihelion, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their currentmean values asmeasured in a dominant group of Oort cloud comets. This may indicate processing of its pre-cometary ices in a relatively oxygen-rich environment. Our measurements indicate consistent pre- and post-perihelion abundance ratios relative to H2O, suggesting we were measuring compositional homogeneity among measured species to the depths in the nucleus sampled. However, the overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1, perhaps due to seasonal differences in the heating of one or more active regions on the nucleus. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules, including H2O on January 8, nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to quantify contributions due to release of H2O from the nucleus, and fromits release in the coma. This resulted in the latter source contributing 25-30% of the total observed water within our slit, which covered roughly +/-300 km by +/-4500 km from the nucleus. We attribute this excess H2O, which peaked at a mean projected distance of 1300-1500 km from the nucleus, to release from water-rich, relatively pure icy grain
    corecore