3,590 research outputs found

    Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation

    Get PDF
    Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ18O values range from -1.4 to 2.8 VPDB, while δ13C range from -4.5 to 2.8 VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ18O and δ13C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers

    Pruritus is a common feature in sheep infected with the BSE agent.

    Get PDF
    BACKGROUND: The variability in the clinical or pathological presentation of transmissible spongiform encephalopathies (TSEs) in sheep, such as scrapie and bovine spongiform encephalopathy (BSE), has been attributed to prion protein genotype, strain, breed, clinical duration, dose, route and type of inoculum and the age at infection. The study aimed to describe the clinical signs in sheep infected with the BSE agent throughout its clinical course to determine whether the clinical signs were as variable as described for classical scrapie in sheep. The clinical signs were compared to BSE-negative sheep to assess if disease-specific clinical markers exist. RESULTS: Forty-seven (34%) of 139 sheep, which comprised 123 challenged sheep and 16 undosed controls, were positive for BSE. Affected sheep belonged to five different breeds and three different genotypes (ARQ/ARQ, VRQ/VRQ and AHQ/AHQ). None of the controls or BSE exposed sheep with ARR alleles were positive. Pruritus was present in 41 (87%) BSE positive sheep; the remaining six were judged to be pre-clinically infected. Testing of the response to scratching along the dorsum of a sheep proved to be a good indicator of clinical disease with a test sensitivity of 85% and specificity of 98% and usually coincided with weight loss. Clinical signs that were displayed significantly earlier in BSE positive cases compared to negative cases were behavioural changes, pruritic behaviour, a positive scratch test, alopecia, skin lesions, teeth grinding, tremor, ataxia, loss of weight and loss of body condition. The frequency and severity of each specific clinical sign usually increased with the progression of disease over a period of 16-20 weeks. CONCLUSION: Our results suggest that BSE in sheep presents with relatively uniform clinical signs, with pruritus of increased severity and abnormalities in behaviour or movement as the disease progressed. Based on the studied sheep, these clinical features appear to be independent of breed, affected genotype, dose, route of inoculation and whether BSE was passed into sheep from cattle or from other sheep, suggesting that the clinical phenotype of BSE is influenced by the TSE strain more than by other factors. The clinical phenotype of BSE in the genotypes and breed studied was indistinguishable from that described for classical scrapie cases

    Planar charged-particle trajectories in multipole magnetic fields

    No full text
    International audienceThis paper provides a complete generalization of the classic result that the radius of curvature (?) of a charged-particle trajectory confined to the equatorial plane of a magnetic dipole is directly proportional to the cube of the particle's equatorial distance (?) from the dipole (i.e. ? ? ?3). Comparable results are derived for the radii of curvature of all possible planar charged-particle trajectories in an individual static magnetic multipole of arbitrary order m and degree n. Such trajectories arise wherever there exists a plane (or planes) such that the multipole magnetic field is locally perpendicular to this plane (or planes), everywhere apart from possibly at a set of magnetic neutral lines. Therefore planar trajectories exist in the equatorial plane of an axisymmetric (m = 0), or zonal, magnetic multipole, provided n is odd: the radius of curvature varies directly as ?n+2. This result reduces to the classic one in the case of a zonal magnetic dipole (n =1). Planar trajectories exist in 2m meridional planes in the case of the general tesseral (0 m n) magnetic multipole. These meridional planes are defined by the 2m roots of the equation cos[m(? ? ?nm)] = 0, where ?nm = (1/m) arctan (hnm/gnm); gnm and hnm denote the spherical harmonic coefficients. Equatorial planar trajectories also exist if (n ? m) is odd. The polar axis (? = 0,?) of a tesseral magnetic multipole is a magnetic neutral line if m > 1. A further 2m(n ? m) neutral lines exist at the intersections of the 2m meridional planes with the (n ? m) cones defined by the (n ? m) roots of the equation Pnm(cos ?) = 0 in the range 0 ? ?, where Pnm(cos ?) denotes the associated Legendre function. If (n ? m) is odd, one of these cones coincides with the equator and the magnetic field is then perpendicular to the equator everywhere apart from the 2m equatorial neutral lines. The radius of curvature of an equatorial trajectory is directly proportional to ?n+2 and inversely proportional to cos[m(? ? ?nm)]. Since this last expression vanishes at the 2m equatorial neutral lines, the radius of curvature becomes infinitely large as the particle approaches any one of these neutral lines. The radius of curvature of a meridional trajectory is directly proportional to rn+2, where r denotes radial distance from the multipole, and inversely proportional to Pnm(cos ?)/sin θ. Hence the radius of curvature becomes infinitely large if the particle approaches the polar magnetic neutral line (m > 1) or any one of the 2m(n ? m) neutral lines located at the intersections of the 2m meridional planes with the (n ? m) cones. Illustrative particle trajectories, derived by stepwise numerical integration of the exact equations of particle motion, are presented for low-degree (n ? 3) magnetic multipoles. These computed particle trajectories clearly demonstrate the "non-adiabatic'' scattering of charged particles at magnetic neutral lines. Brief comments are made on the different regions of phase space defined by regular and irregular trajectories

    Applicability of Ammonia Sensors for Controlling Environmental Parameters in Accommodations for Lamb Fattening

    Get PDF
    Electrochemical ammonia sensors were used to analyse the existing relationship between the ammonia concentration and ambient levels of both temperature and relative humidity in commercial lamb fattening housing equipped with mechanical ventilation and straw-bedded pens. In the first stage of the experiment, sensors were placed over straw beds covered in lamb urine and analysed under laboratory conditions in order to determine ammonia emission evolution over time; three control temperatures (25, 35, and 50 degrees C) were used. A HOBO H8 temperature and relative humidity logger and a Drager NH3LC-6809680 electrochemical ammonia sensor placed in a Drager Polytron 7000 gas detector were utilized as sensors. A positive correlation was established between both ammonia emission time and emitted amount with temperature. Additionally, tests were performed in a commercial lamb housing to determine ammonia concentration variation with respect to height from the ground; three ammonia sensors placed at 50, 90, and 135 cm above the ground were used simultaneously. The ammonia concentration significantly decreased as height increased. A 90 cm height was selected, and three ammonia probes were placed in three different pens inside the livestock housing, along with temperature and relative humidity sensors; four different housing ventilation rates were then tested under real conditions over a time period of 4 months. An adjustment polynomial equation between the housing ambient temperature and the ammonia concentration was obtained with R-2 = 0.632. In conclusion, a relationship can be established between temperature and ammonia concentration in commercial lamb housing under certain handling conditions, which in turn allows for estimating the ammonia concentration adequately based on the ambient internal temperature

    Determination of the Acceleration Region Size in a Loop-structured Solar Flare

    Full text link
    In order to study the acceleration and propagation of bremsstrahlung-producing electrons in solar flares, we analyze the evolution of the flare loop size with respect to energy at a variety of times. A GOES M3.7 loop-structured flare starting around 23:55 on 2002 April 14 is studied in detail using \textit{Ramaty High Energy Solar Spectroscopic Imager} (\textit{RHESSI}) observations. We construct photon and mean-electron-flux maps in 2-keV energy bins by processing observationally-deduced photon and electron visibilities, respectively, through several image-processing methods: a visibility-based forward-fit (FWD) algorithm, a maximum entropy (MEM) procedure and the uv-smooth (UVS) approach. We estimate the sizes of elongated flares (i.e., the length and width of flaring loops) by calculating the second normalized moments of the intensity in any given map. Employing a collisional model with an extended acceleration region, we fit the loop lengths as a function of energy in both the photon and electron domains. The resulting fitting parameters allow us to estimate the extent of the acceleration region which is between 13arcsec\sim 13 \rm{arcsec} and 19arcsec\sim 19 \rm{arcsec}. Both forward-fit and uv-smooth algorithms provide substantially similar results with a systematically better fit in the electron domain.The consistency of the estimates from these methods provides strong support that the model can reliably determine geometric parameters of the acceleration region. The acceleration region is estimated to be a substantial fraction (1/2\sim 1/2) of the loop extent, indicating that this dense flaring loop incorporates both acceleration and transport of electrons, with concurrent thick-target bremsstrahlung emission.Comment: 8 pages, 5 figures, accepted to Astronomy and Astrophysics journa

    Human rights, Public health and Medicinal cannabis use

    Get PDF
    This paper explores the interplay between the human rights and drug control frameworks and critiques case law on medicinal cannabis use to demonstrate that a bona fide human rights perspective allows for a broader conception of ‘health’. This broad conception, encompassing both medicalised and social constructionist definitions, can inform public health policies relating to medici-nal cannabis use. The paper also demonstrates how a human rights lens can alleviate a core tension between the State and the individual within the drug policy field. The leading medicinal cannabis case in the UK highlights the judiciary’s failure to engage with an individual’s human right to health as they adopt an arbitrary, externalist view, focussing on the legality of cannabis to the exclusion of other concerns. Drawing on some international comparisons, the paper considers how a human rights perspective can lead to an approach to medicinal cannabis use which facilitates a holistic understanding of public health

    The spectral, spatial and contrast sensitivity of human polarization pattern perception

    Get PDF
    It is generally believed that humans perceive linear polarized light following its conversion into a luminance signal by diattenuating macular structures. Measures of polarization sensitivity may therefore allow a targeted assessment of macular function. Our aim here was to quantify psychophysical characteristics of human polarization perception using grating and optotype stimuli defined solely by their state of linear polarization. We show: (i) sensitivity to polarization patterns follows the spectral sensitivity of macular pigment; (ii) the change in sensitivity across the central field follows macular pigment density; (iii) polarization patterns are identifiable across a range of contrasts and scales, and can be resolved with an acuity of 15.4 cycles/degree (0.29 logMAR); and (iv) the human eye can discriminate between areas of linear polarization differing in electric field vector orientation by as little as 4.4°. These findings, which support the macular diattenuator model of polarization sensitivity, are unique for vertebrates and approach those of some invertebrates with a well-developed polarization sense. We conclude that this sensory modality extends beyond Haidinger's brushes to the recognition of quantifiable spatial polarization-modulated patterns. Furthermore, the macular origin and sensitivity of human polarization pattern perception makes it potentially suitable for the detection and quantification of macular dysfunction

    Fate and transport of volatile organic compounds in glacial till and groundwater at an industrial site in Northern Ireland

    Get PDF
    Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45-7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at similar to 4.5-7 m bgl. Highest TCE measurements at 390,000 mu g L-1 for groundwater and at 39,000 mu g kg(-1) at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat < 3.0 m bgl in the ECP. Some indication of natural attenuation as VOCs degradation products vinyl chloride (VC) and dichloromethane (DCM) also occur on the site

    The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin

    Get PDF
    <b>Aim</b><p></p> To examine the relationship between plasma 25(OH)D, CRP and albumin concentrations in two patient cohorts.<p></p> <b>Methods</b><p></p> 5327 patients referred for nutritional assessment and 117 patients with critical illness were examined. Plasma 25 (OH) D concentrations were measured using standard methods. Intra and between assay imprecision was <10%.<p></p> <b>Result</b><p></p> In the large cohort, plasma 25 (OH) D was significantly associated with CRP (rs = −0.113, p<0.001) and albumin (rs = 0.192, p<0.001). 3711 patients had CRP concentrations ≤10 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were significantly lower from 35 to 28 to 14 nmol/l (p<0.001). This decrease was significant when albumin concentrations were reduced between 25–34 g/L (p<0.001) and when albumin <25 g/L (p<0.001). 1271 patients had CRP concentrations between 11–80 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were significantly lower from 31 to 24 to 19 nmol/l (p<0.001). This decrease was significant when albumin concentration were 25–34 g/L (p<0.001) and when albumin <25 g/L (p<0.001). 345 patients had CRP concentrations >80 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were not significantly altered varying from 19 to 23 to 23 nmol/l. Similar relationships were also obtained in the cohort of patients with critical illness.<p></p> <b>Conclusion</b><p></p> Plasma concentrations of 25(OH) D were independently associated with both CRP and albumin and consistent with the systemic inflammatory response as a major confounding factor in determining vitamin D status.<p></p&gt
    corecore