11 research outputs found

    Floristic areas of the Middle Volga region: materials to the analysis

    No full text
    The publication presents some quantitative characteristics of the 17 pre-selected floristic areas of the Middle Volga region (the total number of species, number of indigenous taxa and the number of differentiating species). Based on the available data, a linear regression is constructed, illustrating the relative dominance of allochthonous or autochthonous trends in the development of flora in the selected areas. The cluster analysis of the species lists of the floristic areas was completed, and then DCA-ordination of the selected areas was implemented. It is revealed that the forest-steppe areas of the Cis-Volga and Trans-Volga regions are situated by the level of species richness, and the number of species in the selected floristic areas is increasing from West and East towards the Volga

    Chemical and Ecological Status of the District Igarka Krasnoyarsk Territory

    No full text
    Was investigated chemical-ecological status of surface waters in the vicinity of Igarka using a mix of physical and chemical methods. In the water bodies have been found significant amounts of toxic metals and some organic compounds of anthropogenic origin. Were set for the maximum permissible concentration: Fe – 67; Hg – 60; Al – 20; Mn – 1,7; Zn – 1,6 and Ni – 1,3 in accordance with the requirements for fishery waters; Fe – 22; Al ~ 3 ; Ni and Hg – 1 in accordance with the requirements for drinking water. Revealed excess of MPC for methanol to 600 times. The obtained results allow us to assess the environmental situation in the Arctic region of Krasnoyarsk Territory (Igarka) as criticalВ ходе химико-экологического мониторинга обстановки в нижнем течении р. Енисей в районе г. Игарки на расстоянии 120 км к северу от Полярного круга с использованием комплекса физико- химических методов исследования в водных объектах обнаружены значительные количества токсических металлов и ряд органических соединений техногенного происхождения. Установлены превышения ПДК для Fe – 67; Hg – 60; Al – 20; Mn – 1,7; Zn – 1,6 и Ni – 1,3 в соответствии с требованиями для рыбохозяйственных водоемов; Fe – 22; Al ~3; Ni и Hg – 1 в соответствии с требованиями для питьевого водоснабжения. Выявлено превышение ПДК для метанола до 600 раз. Полученные результаты позволяют оценить экологическую обстановку в арктическом районе Красноярского края (г. Игарка) как критическу

    Chemical and Ecological Status of the District Igarka Krasnoyarsk Territory

    No full text
    Was investigated chemical-ecological status of surface waters in the vicinity of Igarka using a mix of physical and chemical methods. In the water bodies have been found significant amounts of toxic metals and some organic compounds of anthropogenic origin. Were set for the maximum permissible concentration: Fe – 67; Hg – 60; Al – 20; Mn – 1,7; Zn – 1,6 and Ni – 1,3 in accordance with the requirements for fishery waters; Fe – 22; Al ~ 3 ; Ni and Hg – 1 in accordance with the requirements for drinking water. Revealed excess of MPC for methanol to 600 times. The obtained results allow us to assess the environmental situation in the Arctic region of Krasnoyarsk Territory (Igarka) as criticalВ ходе химико-экологического мониторинга обстановки в нижнем течении р. Енисей в районе г. Игарки на расстоянии 120 км к северу от Полярного круга с использованием комплекса физико- химических методов исследования в водных объектах обнаружены значительные количества токсических металлов и ряд органических соединений техногенного происхождения. Установлены превышения ПДК для Fe – 67; Hg – 60; Al – 20; Mn – 1,7; Zn – 1,6 и Ni – 1,3 в соответствии с требованиями для рыбохозяйственных водоемов; Fe – 22; Al ~3; Ni и Hg – 1 в соответствии с требованиями для питьевого водоснабжения. Выявлено превышение ПДК для метанола до 600 раз. Полученные результаты позволяют оценить экологическую обстановку в арктическом районе Красноярского края (г. Игарка) как критическу

    sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots

    Get PDF
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    sPlotOpen – An environmentally-balanced, open-access, global dataset of vegetation plots

    Get PDF
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    sPlotOpen – An environmentally balanced, open-access, global dataset of vegetation plots

    No full text
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots

    No full text
    Abstract Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co‐occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open‐access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local‐to‐regional datasets to openly release data. We thus present sPlotOpen, the largest open‐access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co‐occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot‐level data also include community‐weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot‐level records. Software format Three main matrices (.csv), relationally linked.Agence Nationale de la Recherche http://dx.doi.org/10.13039/501100001665H2020 European Research Council http://dx.doi.org/10.13039/100010663Villum Fonden http://dx.doi.org/10.13039/100008398Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Narodowe Centrum Nauki http://dx.doi.org/10.13039/501100004281Latvia grantNSF http://dx.doi.org/10.13039/100003187Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661U.S. National Science Foundation http://dx.doi.org/10.13039/100000001Grantová Agentura České Republiky http://dx.doi.org/10.13039/501100001824German Centre for Integrative Biodiversity Research http://dx.doi.org/10.13039/501100020056Fundación BBVA http://dx.doi.org/10.13039/100007406Akademie Věd České Republiky http://dx.doi.org/10.13039/501100004240Spanish Research Agency http://dx.doi.org/10.13039/501100011033National Research, Development and Innovation Office, Hungar http://dx.doi.org/10.13039/501100018818Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung http://dx.doi.org/10.13039/501100001711Basque Government http://dx.doi.org/10.13039/501100003086Russian Foundation for Basic Research http://dx.doi.org/10.13039/501100002261Brazil’s National Council of Scientific and Technological DevelopmentVolkswagen Foundation http://dx.doi.org/10.13039/50110000166

    sPlot - A new tool for global vegetation analyses

    Get PDF
    Dengler, Jurgen/0000-0003-3221-660X; Chytry, Milan/0000-0002-8122-3075; de Gasper, Andre Luis/0000-0002-1940-9581; Marceno, Corrado/0000-0003-4361-5200; Swacha, Grzegorz/0000-0002-6380-2954; He, Tianhua/0000-0002-0924-3637; Haider, Sylvia/0000-0002-2966-0534; Kuhn, Ingolf/0000-0003-1691-8249; Svenning, Jens-Christian/0000-0002-3415-0862; Jansen, Florian/0000-0002-0331-5185; Casella, Laura/0000-0003-2550-3010; Schmidt, Marco/0000-0001-6087-6117; Chepinoga, Victor/0000-0003-3809-7453; Petrik, Petr/0000-0001-8518-6737; Willner, Wolfgang/0000-0003-1591-8386; Jansen, Steven/0000-0002-4476-5334; De Sanctis, Michele/0000-0002-7280-6199; Niinemets, Ulo/0000-0002-3078-2192; Pauchard, Anibal/0000-0003-1284-3163; Vibrans, Alexander C./0000-0002-8789-5833; Biurrun, Idoia/0000-0002-1454-0433; De Patta Pillar, Valerio/0000-0001-6408-2891; Phillips, Oliver L/0000-0002-8993-6168; Sibik, Jozef/0000-0002-5949-862X; Lenoir, Jonathan/0000-0003-0638-9582; Venanzoni, Roberto/0000-0002-7768-0468; Gutierrez, Alvaro G./0000-0001-8928-3198; Cayuela, Luis/0000-0003-3562-2662; Nobis, Marcin/0000-0002-1594-2418; Agrillo, Emiliano/0000-0003-2346-8346; Manning, Peter/0000-0002-7940-2023; Venanzoni, Roberto/0000-0002-7768-0468; Virtanen, Risto/0000-0002-8295-8217; Higuchi, Pedro/0000-0002-3855-555X; Sopotlieva, Desislava/0000-0002-9281-7039; Kuzemko, Anna/0000-0002-9425-2756; Hatim, Mohamed/0000-0002-0872-5108; Mencuccini, Maurizio/0000-0003-0840-1477; Enquist, Brian J./0000-0002-6124-7096; De Bie, Els/0000-0001-7679-743X; Samimi, Cyrus/0000-0001-7001-7893; Nowak, Arkadiusz/0000-0001-8638-0208; Jimenez-Alfaro, Borja/0000-0001-6601-9597; Font, Xavier/0000-0002-7253-8905; Levesley, Aurora/0000-0002-7999-5519; Acic, Svetlana/0000-0001-6553-3797; Kattge, Jens/0000-0002-1022-8469; Silc, Urban/0000-0002-3052-699X; Arnst, Elise/0000-0003-2388-7428; Moretti, Marco/0000-0002-5845-3198; Kozub, Lukasz/0000-0002-6591-8045; Kacki, Zygmunt/0000-0002-2241-1631; Fagundez, Jaime/0000-0001-6605-7278; Purschke, Oliver/0000-0003-0444-0882; Martynenko, Vasiliy/0000-0002-9071-3789; Jandt, Ute/0000-0002-3177-3669; Peyre, Gwendolyn/0000-0002-1977-7181; SABATINI, FRANCESCO MARIA/0000-0002-7202-7697; Bruelheide, Helge/0000-0003-3135-0356; Wohlgemuth, Thomas/0000-0002-4623-0894; Onyshchenko, Viktor/0000-0001-9079-7241; Kuzmic, Filip/0000-0002-3894-7115; Ejrnaes, Rasmus/0000-0003-2538-8606; Jirousek, Martin/0000-0002-4293-478X; Noroozi, Jalil/0000-0003-4124-2359; Curran, Michael/0000-0002-1858-5612; Baraloto, Christopher/0000-0001-7322-8581; Ozinga, Wim/0000-0002-6369-7859WOS: 000466421500001Aims Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale.German Research FoundationGerman Research Foundation (DFG) [DFG FZT 118]; TRY initiative on plant traitsWe are grateful to thousands of vegetation scientists who sampled vegetation plots in the field or digitized them into regional, national or international databases. We also appreciate the support of the German Research Foundation for funding sPlot as one of the iDiv (DFG FZT 118) research platforms, and the organization of three workshops through the sDiv calls. We acknowledge this support with naming the database "sPlot", where the "s" refers to the sDiv synthesis workshops. The study was supported by the TRY initiative on plant traits (http://www.try-db.org). For all further acknowledgements see Appendix S10. We thank Meelis Partel for his very fast and constructive feedback on an earlier version of this manuscript

    sPlotOpen : an environmentally balanced, open‐access, global dataset of vegetation plots

    No full text
    Motivation: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained: Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain: Global, 0.01–40,000 m². Time period and grain: 1888–2015, recording dates. Major taxa and level of measurement: 42,677 vascular plant taxa, plot-level records. Software format: Three main matrices (.csv), relationally linked

    sPlotOpen:an environmentally balanced, open-access, global dataset of vegetation plots

    No full text
    Abstract Motivation: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained: Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain: Global, 0.01–40,000 m². Time period and grain: 1888–2015, recording dates. Major taxa and level of measurement: 42,677 vascular plant taxa, plot-level records. Software format: Three main matrices (.csv), relationally linked
    corecore