54 research outputs found
Improving biosecurity: A necessity for aquaculture sustainability
The implementation of biosecurity measures is vital to the future development of aquaculture, if the culture of aquatic species is to make it possible to feed the global human population by 2030. Biosecurity includes control of the spread of aquatic plant and animal diseases and invasive pests, and the production of products that are safe to eat. For controls on diseases and invasive pests, it is necessary to implement programmes that involve all regional countries. Lessons from measures implemented in Asia need to be expanded/upscaled in Latin America, Africa and other emerging aquaculture regions. Such development will make countries more self sufficient and will feed local populations.
Globally, there is good evidence that aquatic animal diseases and invasive animal and plant pests are being spread by hull fouling and ballast water in shipping, and serious aquatic animal diseases by the international trade in ornamental fish. While there has been a growing awareness of the danger of ballast water transfer, hull fouling remains a serious problem. It is widely recognized that ornamental fish present a disease risk, but individual countries have tried to address this alone, and there has not been an international effort to control the trade.
Developments in genetics and molecular biology hold great potential for disease control, either by breeding for disease resistance, or by the use of rapid, specific, culture site testing. Currently, there is no evidence that the use of antibiotics in aquaculture poses a threat to human health or that antibiotic-resistant strains have developed; however, the future use of genetically modified aquatic organisms (GMOs) may negate the need for chemotherapy. Cultured aquatic organisms, selected for disease resistance or rapid growth, are likely to become more acceptable, and probably necessary, to feed the rapidly growing global population.
Most global aquaculture occurs in developing Asian countries, in which aquaculture products can harbor zoonotic parasites, and there is a need to treat such products to negate the threat of parasitic zoonoses and permit international export. Climate change is likely to be a major influence on aquaculture in the future, with impacts on coastal aquaculture through increased sea levels affecting coastlines, and acidification. To feed the growing global population, it will be necessary to culture new species, for which research on diseases and invasiveness will be necessary to acquire the information necessary to implement biosecurity measures
Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance
Tilapia culture is an important source of income and nutrition to many rural families. Since 2000, the production of tilapia increased and reached domestic and global markets. Major farmed species is Nile tilapia (Oreochromis niloticus), in earthen ponds and cage cultures. Intensification contributed to global tilapia disease outbreaks, with bacterial infections causing mortalities and morbidities, threatening sustainable production. At tilapia farms, high nutrient concentrations, water temperature and fish densities enhance bacterial growth including virulent bacterial clones and potential zoonotic bacteria. Global warming favours this. This review respectively provides a comprehensive overview of the most common and emerging bacterial pathogens, diseases, clinical presentations and diagnostics of tilapia, including bacteria and diseases with zoonotic potential. First, common bacterial disease outbreaks, including streptococcosis, motile Aeromonas septicaemia, francisellosis, columnaris disease and vibriosis are described. Then, information on emerging bacterial infections of concern for tilapia, like edwardsiellosis through Edwardsiella ictaluri and E. tarda, as well as Aeromonas schubertii is provided. Reports of infectious bacterial tilapia disease outbreaks from other bacteria, including Lactococcus garvieae, Aerococcus viridans, Pseudomonas spp., Mycobacterium marinum and Chlamydia spp., and others are reviewed. Furthermore, bacteria with zoonotic potential, like Streptococcus agalactiae ST283, S. iniae, Aeromonas sp., E. tarda, Vibrio vulnificus pathovar (pv) piscis and M. marinum are included in the review, to provide the most current overview of the disease risks affecting production and post-harvest stages. Additionally, the status and risks of antimicrobial resistance in bacteria from tilapia and other cultured fish through imprudent use of antibiotics, and its future at a global level are provided
Global Burden of Animal Diseases: a novel approach to understanding and managing disease in livestock and aquaculture
Investments in animal health and Veterinary Services can have a measurable impact on the health of people and the environment. These investments require a baseline metric that describes the burden of animal health and welfare in order to justify and prioritise resource allocation and from which to measure the impact of interventions. This paper is part of a process of scientific enquiry in which problems are identified and solutions sought in an inclusive way. It poses the broad question: what should a system to measure the animal disease burden on society look like and what value would it add? Moreover, it aims to do this in such a way as to be accessible by a wide audience, who are encouraged to engage in this debate. Given that farmed animals, including those raised by poor smallholders, are an economic entity, this system should be based on economic principles. These poor farmers are negatively impacted by disparities in animal health technology, which can be addressed through a mixture of supply-led and demand-driven interventions, reinforcing the relevance of targeted financial support from government and non-governmental organisations. The Global Burden of Animal Diseases (GBADs) Programme will glean existing data to measure animal health losses within carefully characterised production systems. Consistent and transparent attribution of animal health losses will enable meaningful comparisons of the animal disease burden to be made between diseases, production systems and countries, and will show how it is apportioned by people's socio-economic status and gender. The GBADs Programme will produce a cloud-based knowledge engine and data portal, through which users will access burden metrics and associated visualisations, support for decisionmaking in the form of future animal health scenarios, and the outputs of wider economic modelling. The vision of GBADs, strengthening the food system for the benefit of society and the environment, is an example of One Health thinking in action
Evolutionary Trajectory of White Spot Syndrome Virus (WSSV) Genome Shrinkage during Spread in Asia
Background - White spot syndrome virus (WSSV) is the sole member of the novel Nimaviridae family, and the source of major economic problems in shrimp aquaculture. WSSV appears to have rapidly spread worldwide after the first reported outbreak in the early 1990s. Genomic deletions of various sizes occur at two loci in the WSSV genome, the ORF14/15 and ORF23/24 variable regions, and these have been used as molecular markers to study patterns of viral spread over space and time. We describe the dynamics underlying the process of WSSV genome shrinkage using empirical data and a simple mathematical model. Methodology/Principal Findings - We genotyped new WSSV isolates from five Asian countries, and analyzed this information together with published data. Genome size appears to stabilize over time, and deletion size in the ORF23/24 variable region was significantly related to the time of the first WSSV outbreak in a particular country. Parameter estimates derived from fitting a simple mathematical model of genome shrinkage to the data support a geometric progression (
The importance of Antarctic krill in biogeochemical cycles
Antarctic krill (Euphausia superba) are swarming, oceanic crustaceans, up to two inches long, and best known as prey for whales and penguins – but they have another important role. With their large size, high biomass and daily vertical migrations they transport and transform essential nutrients, stimulate primary productivity and influence the carbon sink. Antarctic krill are also fished by the Southern Ocean’s largest fishery. Yet how krill fishing impacts nutrient fertilisation and the carbon sink in the Southern Ocean is poorly understood. Our synthesis shows fishery management should consider the influential biogeochemical role of both adult and larval Antarctic krill
Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species
Abstract Background Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. Results Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. Conclusion Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops
Strengthening biosecurity capacity of Palau – FAO project tcp/pl/3601/c1
This report documents the accomplishments of Project TCP/PLW/3601/C1 “Strengthening Biosecurity Capacity of Palau”.
These include:
(i) preparation of the draft Aquatic Biosecurity Regulations for Aquatic Organisms (plus Annexures) and the draft Biofouling Management Regulations;
(ii) the convening of a National Consultation, held 28 March 2017 in Koror, with some 30 participants representing government, the private sector and academe to discuss the draft regulations;
(iii) the conduct of a Biosecurity Database Development Training Course, held 24/27 March 2017 at the National Capitol; and
(iv) the preparation of a Framework for a Biosecurity Database.
The report presents several lists of recommendations arising from the various project activities, the most urgent of which is that: “Recent introductions and transfers of live aquatic animals (both legal and illegal) are highly unsafe and have unnecessarily put future aquaculture development and local biodiversity at risk due to the possibility of introducing serious exotic pathogens and the possible genetic and ecological impacts of introduced and transferred species. The Government of Palau should take immediate steps to correct these practices. All introductions and transfers of live aquatic animals should be prohibited until such time as the draft Aquatic Biosecurity Regulations have been enacted and such species have been considered through the mechanisms contained therein.
- …