225 research outputs found
Towards Verification of Unstructured-Grid Solvers
New methodology for verification of computational methods using unstructured grids is presented. The discretization order properties are studied in computational windows, easily constructed within a collection of grids or a single grid. The windows can be adjusted to isolate the interior discretization, the boundary discretization, or singularities. A major component of the methodology is the downscaling test, introduced previously for studying the convergence rates of truncation and discretization errors of finite-volume discretization schemes on general unstructured grids. Demonstrations of the method are shown, including a comparative accuracy assessment of commonly-used schemes on general mixed grids and the identification of local accuracy deterioration at intersections of tangency and inflow/outflow boundaries. Recommendations for the use of the methodology in large-scale computational simulations are given
Constraints on early dark energy from CMB lensing and weak lensing tomography
Dark energy can be studied by its influence on the expansion of the Universe
as well as on the growth history of the large-scale structure. In this paper,
we follow the growth of the cosmic density field in early dark energy
cosmologies by combining observations of the primary CMB temperature and
polarisation power spectra at high redshift, of the CMB lensing deflection
field at intermediate redshift and of weak cosmic shear at low redshifts for
constraining the allowed amount of early dark energy. We present these
forecasts using the Fisher-matrix formalism and consider the combination of
Planck-data with the weak lensing survey of Euclid. We find that combining
these data sets gives powerful constraints on early dark energy and is able to
break degeneracies in the parameter set inherent to the various observational
channels. The derived statistical 1-sigma-bound on the early dark energy
density parameter is sigma(Omega_d^e)=0.0022 which suggests that early dark
energy models can be well examined in our approach. In addition, we derive the
dark energy figure of merit for the considered dark energy parameterisation and
comment on the applicability of the growth index to early dark energy
cosmologies.Comment: 25 pages, 14 figures, 3 tables; v2: very minor additions, updated to
match version to be published in JCA
Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics
To help understand the high activity of silver as an oxidation catalyst,
e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of
methanol to formaldehyde, the interaction and stability of oxygen species at
the Ag(111) surface has been studied for a wide range of coverages. Through
calculation of the free energy, as obtained from density-functional theory and
taking into account the temperature and pressure via the oxygen chemical
potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a
thin surface-oxide structure is most stable for the temperature and pressure
range of ethylene epoxidation and we propose it (and possibly other similar
structures) contains the species actuating the catalysis. For higher
temperatures, low coverages of chemisorbed oxygen are most stable, which could
also play a role in oxidation reactions. For temperatures greater than about
775 K there are no stable oxygen species, except for the possibility of O atoms
adsorbed at under-coordinated surface sites Our calculations rule out thicker
oxide-like structures, as well as bulk dissolved oxygen and molecular
ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation
To help provide insight into the remarkable catalytic behavior of the
oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface
oxygen, and structures involving both on-surface and sub-surface oxygen, as
well as oxide-like structures at the Ag(111) surface have been studied for a
wide range of coverages and adsorption sites using density-functional theory.
Adsorption on the surface in fcc sites is energetically favorable for low
coverages, while for higher coverage a thin surface-oxide structure is
energetically favorable. This structure has been proposed to correspond to the
experimentally observed (4x4) phase. With increasing O concentrations, thicker
oxide-like structures resembling compressed Ag2O(111) surfaces are
energetically favored. Due to the relatively low thermal stability of these
structures, and the very low sticking probability of O2 at Ag(111), their
formation and observation may require the use of atomic oxygen (or ozone, O3)
and low temperatures. We also investigate diffusion of O into the sub-surface
region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the
adsorption of atomic oxygen and ozone-like species. The present studies,
together with our earlier investigations of on-surface and
surface-substitutional adsorption, provide a comprehensive picture of the
behavior and chemical nature of the interaction of oxygen and Ag(111), as well
as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Understanding Galaxy Formation and Evolution
The old dream of integrating into one the study of micro and macrocosmos is
now a reality. Cosmology, astrophysics, and particle physics intersect in a
scenario (but still not a theory) of cosmic structure formation and evolution
called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to
explain the origin of galaxies. In these lecture notes, I first present a
review of the main galaxy properties, highlighting the questions that any
theory of galaxy formation should explain. Then, the cosmological framework and
the main aspects of primordial perturbation generation and evolution are
pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation,
presenting a review on LCDM halo assembling and properties, and on the main
candidates for non-baryonic dark matter. It is shown how the nature of
elemental particles can influence on the features of galaxies and their
systems. Finally, the complex processes of baryon dissipation inside the
non-linearly evolving CDM halos, formation of disks and spheroids, and
transformation of gas into stars are briefly described, remarking on the
possibility of a few driving factors and parameters able to explain the main
body of galaxy properties. A summary and a discussion of some of the issues and
open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD
THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf).
Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005
(submitted to the Editors on March 15, 2006
LIMITS ON ANISOTROPY AND INHOMOGENEITY FROM THE COSMIC BACKGROUND RADIATION,
We consider directly the equations by which matter imposes anisotropies on
freely propagating background radiation, leading to a new way of using
anisotropy measurements to limit the deviations of the Universe from a
Friedmann-Robertson-Walker (FRW) geometry. This approach is complementary to
the usual Sachs-Wolfe approach: the limits obtained are not as detailed, but
they are more model-independent. We also give new results about combined
matter-radiation perturbations in an almost-FRW universe, and a new exact
solution of the linearised equations.Comment: 18 pages Latex
First attempt at measuring the CMB cross-polarization
We compute upper limits on CMB cross-polarization by cross-correlating the
PIQUE and Saskatoon experiments. We also discuss theoretical and practical
issues relevant to measuring cross-polarization and illustrate them with
simulations of the upcoming BOOMERanG 2002 experiment. We present a method that
separates all six polarization power spectra (TT, EE, BB, TE, TB, EB) without
any other "leakage" than the familiar EE-BB mixing caused by incomplete sky
coverage. Since E and B get mixed, one might expect leakage between TE and TB,
between EE and EB and between BB and EB - our method eliminates this by
preserving the parity symmetry under which TB and EB are odd and the other four
power spectra are even.Comment: Polarization movies can be found at
http://www.hep.upenn.edu/~angelica/polarization.htm
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
- âŠ