45 research outputs found
Recommended from our members
Planning, Preparation, and Transport of the High-Enriched Uranium Spent Nuclear Fuel from the Czech Republic to the Russian Federation
The United States, Russian Federation, and the International Atomic Energy Agency have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program, which is part of the Global Threat Reduction Initiative. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. In February 2003, the RRRFR Program began discussions with the Nuclear Research Institute (NRI) in Rež, Czech Republic, about returning their HEU spent nuclear fuel to the Russian Federation for reprocessing. In March 2005, the U.S. Department of Energy signed a contract with NRI to perform all activities needed for transporting their HEU spent nuclear fuel to Russia. After 2 years of intense planning, preparations, and coordination at NRI and with three other countries, numerous organizations and agencies, and a Russian facility, this shipment is scheduled for completion before the end of 2007. This paper will provide a summary of activities completed for making this international shipment. This paper contains an introduction and background of the RRRFR Program and the NRI shipment project. It summarizes activities completed in preparation for the shipment, including facility preparations at NRI in Rež and FSUE “Mayak” in Ozyorsk, Russia; a new transportation cask system; regulatory approvals; transportation planning and preparation in the Czech Republic, Slovakia, Ukraine, and the Russian Federation though completion of the Unified Project and Special Ecological Programs. The paper also describes fuel loading and cask preparations at NRI and final preparations/approvals for transporting the shipment across the Czech Republic, Slovakia, Ukraine, and the Russian Federation to FSUE Mayak where the HEU spent nuclear fuel will be processed, the uranium will be downblended and made into low-enriched uranium fuel for commercial reactor use, and the high-level waste from the processing will be stabilized and stored for less than 20 years before being sent back to the Czech Republic for final disposition. Finally, the paper contains a section for the summary and conclusions
Recommended from our members
Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation
On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment
Recommended from our members
Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria
In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments
Ambulatory Seton Placement Followed by Fistulotomy: Efficacy and Safety for Perianal Fistula Treatment
Purpose: To evaluate the efficacy and safety of ambulatory seton placement followed by superficial fistulotomy as treatment of perianal fistula.
Methods: Retrospective observational analysis of patients with cryptogenic perianal fistula aged 18-90 years, followed in a central hospital proctology consultation between 2006 and 2017. Data were obtained through clinical record's analysis. Fistula was characterized, using Parks Classification. A probe was passed through the fistula tract, followed by a seton, which remained in situ until superficial fistulotomy was possible.
Results: Ninety-six patients were included (66.67% males, mean age 56 ± 15 years old). Nineteen patients (19.89%) had previous history of perianal fistula and 14 (14.58%) previous anorectal surgery. Seventy-four patients (78.72%) were submitted to fistulotomy, three (3.19%) had seton fistulotomy and one had no seton progression. Intention-to-treat and per-protocol efficacy analyses were 80.2 and 98.7%, respectively. Among the 74 patients who completed the procedure, type of fistula and time with seton were distributed as followed: 47 (63.51%) intersphincteric fistula (15 ± 31 weeks), 26 (35.14%) transsphincteric fistula (32 ± 47 weeks), one (1.35%) suprasphincteric fistula (11 weeks). Previous fistula was associated with a longer time with seton (P = 0.018). Incontinence was reported in two (2.7%) patients, who had previous perianal fistula or anorectal surgery. Two patients (2.7%) had recurrence after fistulotomy.
Conclusion: Placement of seton followed by superficial fistulotomy in an ambulatory setting is a safe and effective method for simple low perianal fistula treatment. Incontinence rate may be higher in patients with previous perianal fistula or anorectal surgery.info:eu-repo/semantics/publishedVersio
Recommended from our members
Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania
Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment
Prehabilitation in elective abdominal cancer surgery in older patients: systematic review and meta‐analysis
Background
Prehabilitation has emerged as a strategy to prepare patients for elective abdominal cancer surgery with documented improvements in postoperative outcomes. The aim of this study was to assess the evidence for prehabilitation interventions of relevance to the older adult.
Methods
Systematic searches were conducted using MEDLINE, Web of Science, Scopus, CINAHL and PsychINFO. Studies of preoperative intervention (prehabilitation) in patients undergoing abdominal cancer surgery reporting postoperative outcomes were included. Age limits were not set as preliminary searches revealed this would be too restrictive. Articles were screened and selected based on PRISMA guidelines, and assessment of bias was performed. Qualitative, quantitative and meta‐analyses of data were conducted as appropriate.
Results
Thirty‐three studies (3962 patients) were included. Interventions included exercise, nutrition, psychological input, comprehensive geriatric assessment and optimization, smoking cessation and multimodal (two or more interventions). Nine studies purposely selected high‐risk, frail or older patients. Thirty studies were at moderate or high risk of bias. Ten studies individually reported benefits in complication rates, with meta‐analyses for overall complications demonstrating significant benefit: multimodal (risk difference −0·1 (95 per cent c.i. −0·18 to −0·02); P = 0·01, I2 = 18 per cent) and nutrition (risk difference −0·18 (−0·26 to −0·10); P < 0·001, I2 = 0 per cent). Seven studies reported reductions in length of hospital stay, with no differences on meta‐analysis.
Conclusion
The conclusions of this review are limited by the quality of the included studies, and the heterogeneity of interventions and outcome measures reported. Exercise, nutritional and multimodal prehabilitation may reduce morbidity after abdominal surgery, but data specific to older patients are sparse
РЕАКТОРНЫЕ И ПОСЛЕРЕАКТОРНЫЕ ИСПЫТАНИЯ И ИССЛЕДОВАНИЯ НА БЫСТРЫХ КРИТИЧЕСКИХ СБОРКАХ ВЫСОКОПЛОТНОГО НИЗКООБОГАЩЕННОГО УРАН-ЦИРКОНИЕВОГО КАРБОНИТРИДНОГО ТОПЛИВА
UZrCN fuel is a high-density, high-temperature fuel that has potential for application in different type reactors. In the past, reactor tests using UZrCN HEU (96% U-235) fuel have been performed to low burnup. However, reactor-testing data are still needed at high burnup to confirm the optimal performance of this-type fuel. The SM-3 research reactor, which is a high-flux reactor located at the State Scientific Center – Research Institute of Atomic Reactors, Dimitrovgrad, Russia, will be used to test a UZrCN LEU (19.73% U-235) fuel to ~40% of burnup. The fuel will then be examined to determine its performance during irradiation.On the “Giacint” and “Kristal” critical facilities located at the Joint Institute for Power and Nuclear Research – SOSNY of the National Academy of Sciences of Belarus, Minsk, Belarus, criticality experiments on multiplying systems modeling physical features of cores with UZrCN LEU (19.75% U-235) fuel have been prepared for use in works on fast reactors with gaseous and liquid-metal coolants. Critical assemblies represent uniform hexagonal lattices of fuel assemblies, each of which consists of 7 fuel rods and has no clad. The active fuel length is 500 mm. Clad material is stainless steel or Nb. Three types of fuel assemblies with different matrix material (air, aluminum and lead) are investigated. These are side radial, top and bottom reflectors – beryllium (internal layer) and stainless steel (external layer).This article desribes the design of the experiment that will be performed in the SM-3 reactor and discusses the results of different calculations that have been performed to show that the experiment design will meet all objectives. The description of construction and composition of critical assemblies with UZrCN fuel and the calculation results are also presented. Топливо UZrCN представляет собой высокоплотное высокотемпературное топливо, которое может применяться в реакторах различных типов. В прошлом реакторные испытания ВОУ (96% U-235) UzrCN-топлива были выполнены только с низким выгоранием. Вместе с тем данные реакторных испытаний необходимы при высоком выгорании для подтверждения оптимальных характеристик этого типа топлива. Высокопоточный исследовательский реактор СМ-3, расположенный в Государственном научном центре – Научно-исследовательский институт атомных реакторов (г. Димитровград, Россия), будет использоваться для испытания НОУ (19,73% U-235) UzrCN-топлива до ~40 % выгорания. Затем топливо будет исследоваться для определения его характеристик после облучения.На критических стендах «Гиацинт» и «Кристал» в Объединенном институте энергетических и ядерных исследований – Сосны Национальной академии наук Беларуси (г. Минск, Беларусь) осуществляется подготовка к экспериментам по критичности на размножающих системах, моделирующих физические особенности активных зон с НОУ (19,75% U-235) UzrCN-топливом для использования в работах по новому поколению быстрых реакторов с газообразными и жидкометаллическими теплоносителями. Критические сборки представляют собой однородные гексагональные решетки топливных сборок, каждая из которых состоит из семи топливных стержней и не имеет оболочки. Длина активной части топливного стержня составляет 500 мм. Материал оболочки – нержавеющая сталь или ниобий. Будут исследованы три типа топливных сборок с различным материалом матрицы в них (воздух, алюминий и свинец). Боковой радиальный, верхние и нижние отражатели – бериллий (внутренний слой) и нержавеющая сталь (внешний слой).В настоящей статье описываются проектные данные эксперимента, который будет осуществлен на реакторе СМ-3, и обсуждаются результаты расчетов, призванные показать, что эксперимент будет отвечать всем поставленным целям. Также представлены описания конструкции и состава критических сборок с топливом UZrCN и результаты их расчетов.
Recommended from our members
Air Shipment of Spent Nuclear Fuel from Romania to Russia
Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel
Recommended from our members
AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA
In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel