79 research outputs found
Dust reddening and extinction curves towards gamma-ray bursts at z > 4
Dust is known to be produced in the envelopes of AGB stars, the expanded
shells of supernova (SN) remnants, and in situ grain growth in the ISM,
although the corresponding efficiency of each of these dust formation
mechanisms at different redshifts remains a topic of debate. During the first
Gyr after the Big Bang, it is widely believed that there was not enough time to
form AGB stars in high numbers, so that the dust at this epoch is expected to
be purely from SNe, or subsequent grain growth in the ISM. The time period
corresponding to z ~5-6 is thus expected to display the transition from SN-only
dust to a mixture of both formation channels as we know it today. Here we aim
to use afterglow observations of GRBs at redshifts larger than in order
to derive host galaxy dust column densities along their line-of-sight and to
test if a SN-type dust extinction curve is required for some of the bursts. GRB
afterglow observations were performed with the 7-channel GROND Detector at the
2.2m MPI telescope in La Silla, Chile and combined with data gathered with XRT.
We increase the number of measured values for GRBs at z > 4 by a factor
of ~2-3 and find that, in contrast to samples at mostly lower redshift, all of
the GRB afterglows have a visual extinction of < 0.5 mag. Analysis of the
GROND detection thresholds and results from a Monte-Carlo simulation show that,
although we partly suffer from an observational bias against highly
extinguished sight-lines, GRB host galaxies at 4 < z < 6 seem to contain on
average less dust than at z ~ 2. Additionally, we find that all of the GRBs can
be modeled with locally measured extinction curves and that the SN-like dust
extinction curve provides a better fit for only two of the afterglow SEDs. For
the first time we also report a photometric redshift of for GRB
100905A, making it one of the most distant GRBs known to date.Comment: 26 pages, 37 figure
Gamma-Ray Bursts Trace UV Metrics of Star Formation over 3 < z < 5
We present the first uniform treatment of long duration gamma-ray burst (GRB)
host galaxy detections and upper limits over the redshift range 3<z<5, a key
epoch for observational and theoretical efforts to understand the processes,
environments, and consequences of early cosmic star formation. We contribute
deep imaging observations of 13 GRB positions yielding the discovery of eight
new host galaxies. We use this dataset in tandem with previously published
observations of 31 further GRB positions to estimate or constrain the host
galaxy rest-frame ultraviolet (UV; 1600 A) absolute magnitudes M_UV. We then
use the combined set of 44 M_UV estimates and limits to construct the M_UV
luminosity function (LF) for GRB host galaxies over 3<z<5 and compare it to
expectations from Lyman break galaxy (LBG) photometric surveys with the Hubble
Space Telescope. Adopting standard prescriptions for the luminosity dependence
of galaxy dust obscuration (and hence, total star formation rate), we find that
our LF is compatible with LBG observations over a factor of 600x in host
luminosity, from M_UV = -22.5 mag to >-15.6 mag, and with extrapolations of the
assumed Schechter-type LF well beyond this range. We review proposed
astrophysical and observational biases for our sample, and find they are for
the most part minimal. We therefore conclude, as the simplest interpretation of
our results, that GRBs successfully trace UV metrics of cosmic star formation
over the range 3<z<5. Our findings suggest GRBs are providing an accurate
picture of star formation processes from z ~3 out to the highest redshifts.Comment: publ. ApJ 809 (2015) 76; 14 figures; replacement to reflect changes
to v1 (rounding effects, diff. LF from Bouwens
Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane
Contains fulltext :
76045.pdf (publisher's version ) (Open Access)BACKGROUND: The spread of drug resistance has been a major obstacle to the control of malaria. The mechanisms underlying drug resistance in malaria seem to be complex and multigenic. The current literature on multiple drug resistance against anti-malarials has documented PfMDR1, an ATP-binding cassette (ABC) protein, as an important determinant of resistance. In the Plasmodium falciparum genome, there are several ABC transporters some of which could be putative drug transporting proteins. In order to understand the molecular mechanisms underlying drug resistance, characterization of these transporters is essential. The aim of this study was to characterize and localize putative ABC transporters. METHODS: In the plasmoDB database, 16 members of the P. falciparum ABC family can be identified, 11 of which are putative transport proteins. A phylogenetic analysis of the aligned NBDs of the PfABC genes was performed. Antibodies against PfMRP1 (PfABCC1), PfMRP2 (PfABCC2), and PfMDR5 (PfABCB5) were generated, affinity purified and used in immunocytochemistry to localize the proteins in the asexual stages of the parasite. RESULTS: The ABC family members of P. falciparum were categorized into subfamilies. The ABC B subfamily was the largest and contained seven members. Other family members that could be involved in drug transport are PfABCC1, PfABCC2, PfABCG1, and PfABCI3. The expression and localization of three ABC transport proteins was determined. PfMRP1, PfMRP2, and PfMDR5 are localized to the plasma membrane in all asexual stages of the parasite. CONCLUSION: In conclusion, 11 of the 16 ABC proteins in the P. falciparum genome are putative transport proteins, some of which might be involved in drug resistance. Moreover, it was demonstrated that three of these proteins are expressed on the parasite's plasma membrane.1 p
Concentration of Plasmodium falciparum gametocytes in whole blood samples by magnetic cell sorting enhances parasite infection rates in mosquito feeding assays.
BACKGROUND: Mosquito-feeding assays are important tools to guide the development and support the evaluation of transmission-blocking interventions. These functional bioassays measure the sporogonic development of gametocytes in blood-fed mosquitoes. Measuring the infectivity of low gametocyte densities has become increasingly important in malaria elimination scenarios. This will pose challenges to the sensitivity and throughput of existing mosquito-feeding assay protocols. Here, different gametocyte concentration methods of blood samples were explored to optimize conditions for detection of positive mosquito infections. METHODS: Mature gametocytes of Plasmodium falciparum were diluted into whole blood samples of malaria-naïve volunteers. Standard centrifugation, Percoll gradient, magnetic cell sorting (MACS) enrichment were compared using starting blood volumes larger than the control (direct) feed. RESULTS: MACS gametocyte enrichment resulted in the highest infection intensity with statistically significant increases in mean oocyst density in 2 of 3 experiments (p = 0.0003; p ≤ 0.0001; p = 0.2348). The Percoll gradient and standard centrifugation procedures resulted in variable infectivity. A significant increase in the proportion of infected mosquitoes and oocyst density was found when larger volumes of gametocyte-infected blood were used with the MACS procedure. CONCLUSIONS: The current study demonstrates that concentration methods of P. falciparum gametocyte-infected whole blood samples can enhance transmission in mosquito-feeding assays. Gametocyte purification by MACS was the most efficient method, allowing the assessment of gametocyte infectivity in low-density gametocyte infections, as can be expected in natural or experimental conditions
The Dynamics of Naturally Acquired Immune Responses to Plasmodium falciparum Sexual Stage Antigens Pfs230 & Pfs48/45 in a Low Endemic Area in Tanzania
BACKGROUND: Naturally acquired immune responses against sexual stages of P. falciparum can reduce the transmission of malaria from humans to mosquitoes. These antigens are candidate transmission-blocking vaccines but little is known about the acquisition of sexual stage immunity after exposure to gametocytes, or their longevity and functionality. We conducted a longitudinal study on functional sexual stage immune responses. METHODOLOGY/PRINCIPAL FINDINGS: Parasitaemic individuals (n = 116) were recruited at a health centre in Lower Moshi, Tanzania. Patients presented with gametocytes (n = 16), developed circulating gametocytes by day 7 (n = 69) or between day 7 and 14 (n = 10) after treatment or did not develop gametocytes (n = 21). Serum samples were collected on the first day of gametocytaemia and 28 and 84 days post-enrolment (or d7, 28, 84 after enrolment from gametocyte-negative individuals). Antibody responses to sexual stage antigens Pfs230 and Pfs48/45 were detected in 20.7% (72/348) and 15.2% (53/348) of the samples, respectively, and were less prevalent than antibodies against asexual stage antigens MSP-1(19) (48.1%; 137/285) and AMA-1 (52.4%; 129/246)(p<0.001). The prevalence of anti-Pfs230 (p = 0.026) and anti-Pfs48/45 antibodies (p = 0.017) increased with longer duration of gametocyte exposure and had an estimated half-life of approximately 3 months. Membrane feeding experiments demonstrated a strong association between the prevalence and concentration of Pfs230 and Pfs48/45 antibodies and transmission reducing activity (TRA, p<0.01). CONCLUSIONS/SIGNIFICANCE: In a longitudinal study, anti-Pfs230 and Pfs48/45 antibodies developed rapidly after exposure to gametocytes and were strongly associated with transmission-reducing activity. Our data indicate that the extent of antigen exposure is important in eliciting functional transmission-reducing immune responses
Semi-high-throughput detection of Plasmodium falciparum and Plasmodium vivax oocysts in mosquitoes using bead-beating followed by circumsporozoite ELISA and quantitative PCR.
BACKGROUND: The malaria infection status of mosquitoes is commonly determined by microscopic detection of oocysts on the dissected mosquito midgut. This method is labour-intensive, does not allow processing of large numbers of mosquitoes and can be challenging in terms of objective classification of oocysts. Here, a semi-high-throughput bead-beating ELISA method is proposed for detection of the circumsporozoite protein (CSP) followed by confirmation by quantitative PCR (qPCR). METHODS: Cultured Plasmodium falciparum gametocytes were offered to Anopheles stephensi mosquitoes and examined by microscopy. After bead-beating, mosquito homogenate was examined by CSP-ELISA and 18S qPCR. As negative controls, mosquitoes that were offered a heat-inactivated gametocyte blood meal were used. The CSP-ELISA/qPCR methodology was applied to high and low-intensity infections of cultured P. falciparum gametocytes. A similar methodology optimized for P. vivax was used on mosquitoes that were offered blood from Ethiopian donors who were naturally infected with P. vivax. RESULTS: There was considerable variation in CSP-ELISA signal and qPCR values in mosquitoes with low oocyst intensities. There was a strong agreement mosquito positivity by CSP-ELISA and by qPCR in mosquitoes that fed on cultured P. falciparum material (agreement 96.9%; kappa = 0.97) and naturally infected P. vivax parasite carriers [agreement 92.4% (kappa = 0.83)]. CONCLUSIONS: The proposed bead-beating CSP-ELISA/qPCR methodology considerably increases throughput for the detection of mosquito infection. qPCR remains necessary to confirm infections in mosquitoes with low CSP-ELISA signal. This methodology may prove particularly useful for studies where very low mosquito infection prevalence is expected and study sites where experience with oocyst detection is limited
Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity
Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray. In field-based mosquito-feeding assays the likelihood and rate of mosquito infection are significantly lower for individuals reactive to Pfs48/45, Pfs230 or to combinations of the novel TRA-associated proteins. We also show that naturally acquired purified antibodies against key transmission-blocking epitopes of Pfs48/45 and Pfs230 are mechanistically involved in TRA, whereas sera depleted of these antibodies retain high-level, complement-independent TRA. Our analysis demonstrates that host antibody responses to gametocyte proteins are associated with reduced malaria transmission efficiency from humans to mosquitoes
A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model.
Background: Malaria elimination strategies require a thorough understanding of parasite transmission from human to mosquito. A clinical model to induce gametocytes to understand their dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce gametocyte carriage with different antimalarial drug regimens. Methods: In a single centre, open-label randomised trial, healthy malaria-naive participants (aged 18–35 years) were infected with Plasmodium falciparum by bites of infected Anopheles mosquitoes. Participants were randomly allocated to four different treatment arms (n = 4 per arm) comprising low-dose (LD) piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by a curative regimen upon recrudescence. Male and female gametocyte densities were determined by molecular assays. Results: Mature gametocytes were observed in all participants (16/16, 100%). Gametocytes appeared 8.5–12 days after the first detection of asexual parasites. Peak gametocyte densities and gametocyte burden was highest in the LD-PIP/SP arm, and associated with the preceding asexual parasite biomass (p=0.026). Male gametocytes had a mean estimated circulation time of 2.7 days (95% CI 1.5–3.9) compared to 5.1 days (95% CI 4.1–6.1) for female gametocytes. Exploratory mosquito feeding assays showed successful sporadic mosquito infections. There were no serious adverse events or significant differences in the occurrence and severity of adverse events between study arms (p=0.49 and p=0.28). Conclusions: The early appearance of gametocytes indicates gametocyte commitment during the first wave of asexual parasites emerging from the liver. Treatment by LD-PIP followed by a curative SP regimen, results in the highest gametocyte densities and the largest number of gametocyte-positive days. This model can be used to evaluate the effect of drugs and vaccines on gametocyte dynamics, and lays the foundation for fulfilling the critical unmet need to evaluate transmission-blocking interventions against falciparum malaria for downstream selection and clinical development. Funding: Funded by PATH Malaria Vaccine Initiative (MVI). Clinical trial number: NCT02836002
Modest heterologous protection after Plasmodium falciparum sporozoite immunization: a double-blind randomized controlled clinical trial.
BACKGROUND: A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains. METHODS: We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones. RESULTS: NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation. CONCLUSIONS: Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection. TRIAL REGISTRATION: This trial is registered in clinicaltrials.gov, under identifier NCT02098590
Safety, Immunogenicity, and Protective Efficacy of Intradermal Immunization with Aseptic, Purified, Cryopreserved Plasmodium falciparum Sporozoites in Volunteers Under Chloroquine Prophylaxis
Immunization of volunteers under chloroquine prophylaxis by bites of *Plasmodium falciparum* sporozoite (PfSPZ)–infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied intradermal immunization with cryopreserved, infectious PfSPZ in volunteers taking chloroquine (PfSPZ
chemoprophylaxis vaccine [CVac]). Vaccine groups 1 and 3 received 3x monthly immunizations with 7.5 x 10^4
PfSPZ. Control groups 2 and 4 received normal saline. Groups 1 and 2 underwent CHMI (#1) by mosquito bite 60
days after the third immunization. Groups 3 and 4 were boosted 168 days after the third immunization and
underwent CHMI (#2) 137 days later. Vaccinees (11/20, 55%) and controls (6/10, 60%) had the same percentage of
mild to moderate solicited adverse events. After CHMI #1, 8/10 vaccinees (group 1) and 5/5 controls (group 2)
became parasitemic by microscopy; the two negatives were positive by quantitative real-time polymerase chain
reaction (qPCR). After CHMI #2, all vaccinees in group 3 and controls in group 4 were parasitemic by qPCR.
Vaccinees showed weak antibody and no detectable cellular immune responses. Intradermal immunization with up
to 3 x 10^5 PfSPZ-CVac was safe, but induced only minimal immune responses and no sterile protection against Pf
CHMI.
INTRODUCTIO
- …