1,034 research outputs found

    Extension of Modularity Density for Overlapping Community Structure

    Full text link
    Modularity is widely used to effectively measure the strength of the disjoint community structure found by community detection algorithms. Although several overlapping extensions of modularity were proposed to measure the quality of overlapping community structure, there is lack of systematic comparison of different extensions. To fill this gap, we overview overlapping extensions of modularity to select the best. In addition, we extend the Modularity Density metric to enable its usage for overlapping communities. The experimental results on four real networks using overlapping extensions of modularity, overlapping modularity density, and six other community quality metrics show that the best results are obtained when the product of the belonging coefficients of two nodes is used as the belonging function. Moreover, our experiments indicate that overlapping modularity density is a better measure of the quality of overlapping community structure than other metrics considered.Comment: 8 pages in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference o

    Community Detection via Maximization of Modularity and Its Variants

    Full text link
    In this paper, we first discuss the definition of modularity (Q) used as a metric for community quality and then we review the modularity maximization approaches which were used for community detection in the last decade. Then, we discuss two opposite yet coexisting problems of modularity optimization: in some cases, it tends to favor small communities over large ones while in others, large communities over small ones (so called the resolution limit problem). Next, we overview several community quality metrics proposed to solve the resolution limit problem and discuss Modularity Density (Qds) which simultaneously avoids the two problems of modularity. Finally, we introduce two novel fine-tuned community detection algorithms that iteratively attempt to improve the community quality measurements by splitting and merging the given network community structure. The first of them, referred to as Fine-tuned Q, is based on modularity (Q) while the second one is based on Modularity Density (Qds) and denoted as Fine-tuned Qds. Then, we compare the greedy algorithm of modularity maximization (denoted as Greedy Q), Fine-tuned Q, and Fine-tuned Qds on four real networks, and also on the classical clique network and the LFR benchmark networks, each of which is instantiated by a wide range of parameters. The results indicate that Fine-tuned Qds is the most effective among the three algorithms discussed. Moreover, we show that Fine-tuned Qds can be applied to the communities detected by other algorithms to significantly improve their results

    Parallel Toolkit for Measuring the Quality of Network Community Structure

    Full text link
    Many networks display community structure which identifies groups of nodes within which connections are denser than between them. Detecting and characterizing such community structure, which is known as community detection, is one of the fundamental issues in the study of network systems. It has received a considerable attention in the last years. Numerous techniques have been developed for both efficient and effective community detection. Among them, the most efficient algorithm is the label propagation algorithm whose computational complexity is O(|E|). Although it is linear in the number of edges, the running time is still too long for very large networks, creating the need for parallel community detection. Also, computing community quality metrics for community structure is computationally expensive both with and without ground truth. However, to date we are not aware of any effort to introduce parallelism for this problem. In this paper, we provide a parallel toolkit to calculate the values of such metrics. We evaluate the parallel algorithms on both distributed memory machine and shared memory machine. The experimental results show that they yield a significant performance gain over sequential execution in terms of total running time, speedup, and efficiency.Comment: 8 pages; in Network Intelligence Conference (ENIC), 2014 Europea
    • …
    corecore