51 research outputs found

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Contaminação por mercúrio em sedimento e em moluscos do Pantanal, Mato Grosso, Brasil Mercury contamination in sediment and in molluscs of Pantanal, Mato Grosso, Brazil

    No full text
    <abstract language="eng">The total level of mercury detected in the sediment and in the tissues of molluscs from the Bento Gomes basin, although low, have shown that the mercury used in the gold mining activities in the Poconé wetlands has contaminated those aquatic habitats in Pantanal. From 69 sediment samples analyzed, 26 % (N = 18) have shown levels ranging from 0.01 to 0.25µg.g-1 of mercury (moist weight). Mercury levels analyzed in 54 samples of mollusc tissues (Ampullaria scalaris Orbigny, 1835; A. canaliculata Lamarck, 1819 and Marisa planogyra Pilsbry, 1933) have shown that 30% (N = 16) were contaminated with levels ranging from 0.02 to 1.16µg.g-1 moist weight. This study shows that the mercury used in digs for gold mining and released into the environment has reached the habitats of Pantanal spread from the sediment into the molluscs living in the region

    The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping.

    Get PDF
    Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue

    Germinação de sementes de Asteraceae nativas no Rio Grande do Sul, Brasil Germination of seeds of Asteraceae natives of Rio Grande do Sul, Brazil

    No full text
    Aquênios (sementes) recém coletados, de treze espécies nativas de Asteraceae comuns nos ambientes abertos da região sul do Brasil foram testados quanto à germinação em temperaturas alternadas ( 20/10; 25/15; 30/20; 35/25°C) e sob temperaturas constantes ( 20; 25 e 30°C) com ou sem luz. A temperatura ótima para germinação varia entre as espécies, sendo que as espécies Elephantopus mobilis; Eupatorium laevigatum; Mikania cordifolia; Senecio oxyphyllus; Trixis prastens germinam de forma semelhante em todas temperaturas testadas. Eclipta alba tem sua germinação promovida a 30°C. Tagetes minuta tem a germinação das sementes promovida a 20°C. Em Senecio heterotrichius; S. selloi; Stenachaenium campestre; Symphyopappus casarettoi e Vernonia nudiflora as sementes germinam igualmente a 20 ou 25°C.. A luz promoveu a germinação de todas espécies exceto para Stenachaenium campestre e Tagetes minuta, sendo esta última espécie fotoblástica negativa. Quanto ao tempo médio de germinação, as espécies podem ser divididas em ; rápidas- menos de 5 dias (Baccharis trimera; Eclipta alba; Elephantopus mollis; Stenachaenium campestre e Vernonia nudiflora); intermediárias: entre 5 e 10 dias ( Eupatorium laevigatum; Mikania cordifolia e Tagetes minuta) ; lentas: mais de 10 dias (Senecio heterotrichius; S.oxyphyllus; S.selloi; Symphyopappus casarettoi e Trixis praestans).Os resultados mostram que a germinação de sementes de Asteraceas variam com a temperatura e o regime de luz; podendo prover uma base inicial para interpretação de efeitos sazonais sobre a germinação e estabelecimento a campo. Em adição, comentários sobre o substrato ágar ou areia são feitos.<br>Achenes of thirteen native Asteraceae species common to the natural grassland or weeds of the southern region of Brazil were tested for germination over a range of alternating temperatures ( 20/10; 25/15; 30/20 and 35/25°C), and under constant temperatures ( 20; 25 and 30°C) with light or not .Only fresh collected achenes (herein = seeds) were used. The optimum temperature for germination differed among the species, with Elephantopus mobillis; Eupatorium laevigatum; Mikania cordifolia; Senecio oxyphyllus; Trixis praestans germinating the most over all temperatures tested. Eclipta alba seeds germination was promoted at 30°C. Colder treatments promoted germination in Tagetes minuta , and in Senecio heterotrichius; S.selloi; Stenachaenium campestre; Symphyopappus casarettoi and Vernonia nudiflora germination was equivalent at 20 or 25°C. Light promoted germination for all species except in Stenachaenium campestre and Tagetes minuta, the latter being a negative photoblastic species. According to the mean time for germination, the species could be ranked in: fast -less than 5 days- (Baccharis trimera; Eclipta alba; Elephantopus mollis; Stenachaenium campestre and Vernonia nudiflora); intermediate: between 5 and 10 days- (Eupatorium laevigatum; Mikania cordifolia and Tagetes minuta) ; slow: more than 10 days-(Senecio heterotrichius; S.oxyphyllus; S.selloi; Symphyopappus casarettoi; Trixis praestans). The results show that germination of seeds of a range of Asteraceae species varies with temperature and light regime; they provide an initial basis on which to test and interpret the effects of seasonal factors on germination and field establishment. In addition, comments on the agar and sand substrates were made
    corecore