237 research outputs found

    Allergen Challenge Induces Ifng Dependent GTPases in the Lungs as Part of a Th1 Transcriptome Response in a Murine Model of Allergic Asthma

    Get PDF
    According to the current paradigm, allergic airway inflammation is mediated by Th2 cytokines and pro-inflammatory chemokines. Since allergic inflammation is self-limited, we hypothesized that allergen challenge simultaneously induces anti-inflammatory genes to counter-balance the effects of Th2 cytokines and chemokines. To identify these putative anti-inflammatory genes, we compared the gene expression profile in the lungs of ragweed-sensitized mice four hours after challenge with either PBS or ragweed extract (RWE) using a micro-array platform. Consistent with our hypothesis, RWE challenge concurrently upregulated Th1-associated early target genes of the Il12/Stat4 pathway, such as p47 and p65 GTPases (Iigp, Tgtp and Gbp1), Socs1, Cxcl9, Cxcl10 and Gadd45g with the Th2 genes Il4, Il5, Ccl2 and Ccl7. These Th1-associated genes remain upregulated longer than the Th2 genes. Augmentation of the local Th1 milieu by administration of Il12 or CpG prior to RWE challenge further upregulated these Th1 genes. Abolition of the Th1 response by disrupting the Ifng gene increased allergic airway inflammation and abrogated RWE challenge-induced upregulation of GTPases, Cxcl9, Cxcl10 and Socs1, but not Gadd45g. Our data demonstrate that allergen challenge induces two sets of Th1-associated genes in the lungs: 1) Ifng-dependent genes such as p47 and p65 GTPases, Socs1, Cxcl9 and Cxcl10 and 2) Ifng-independent Th1-inducing genes like Gadd45g. We propose that allergen-induced airway inflammation is regulated by simultaneous upregulation of Th1 and Th2 genes, and that persistent unopposed upregulation of Th1 genes resolves allergic inflammation

    Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells

    Get PDF
    Abasic (AP)-endonuclease (APE) is responsible for repair of AP sites, and single-strand DNA breaks with 3′ blocking groups that are generated either spontaneously or during repair of damaged or abnormal bases via the DNA base excision repair (BER) pathway in both nucleus and mitochondria. Mammalian cells express only one nuclear APE, 36 kDa APE1, which is essential for survival. Mammalian mitochondrial (mt) BER enzymes other than mtAPE have been characterized. In order to identify and characterize mtAPE, we purified the APE activity from beef liver mitochondria to near homogeneity, and showed that the mtAPE which has 3-fold higher specific activity relative to APE1 is derived from the latter with deletion of 33 N-terminal residues which contain the nuclear localization signal. The mtAPE-sized product could be generated by incubating (35)S-labeled APE1 with crude mitochondrial extract, but not with cytosolic or nuclear extract, suggesting that cleavage of APE1 by a specific mitochondria-associated N-terminal peptidase is a prerequisite for mitochondrial import. The low abundance of mtAPE, particularly in cultured cells might be the reason for its earlier lack of detection by western analysis

    Redox-regulating sirtuins in aging, caloric restriction, and exercise.

    Get PDF
    The consequence of decreased nicotinamide adenine dinucleotide (NAD(+)) levels as a result of oxidative challenge is altered activity of sirtuins, which, in turn, brings about a wide range of modifications in mammalian cellular metabolism. Sirtuins, especially SIRT1, deacetylate important transcription factors such as p53, forkhead homeobox type O proteins, nuclear factor κB, or peroxisome proliferator-activated receptor γ coactivator 1α (which controls the transcription of pro- and antioxidant enzymes, by which the cellular redox state is affected). The role of SIRT1 in DNA repair is enigmatic, because it activates Ku70 to cope with double-strand breaks, but deacetylation of apurinic/apyrimidinic endonuclease 1 and probably of 8-oxoguanine-DNA glycosylase 1 decreases the activity of these DNA repair enzymes. The protein-stabilizing effects of the NAD+-dependent lysine deacetylases are readily related to housekeeping and redox regulation. The role of sirtuins in caloric restriction (CR)-related longevity in yeast is currently under debate. However, in mammals, it seems certain that sirtuins are involved in many cellular processes that mediate longevity and disease prevention via the effects of CR through the vascular, neuronal, and muscular systems. Regular physical exercise-mediated health promotion also involves sirtuin-regulated pathways including the antioxidant-, macromolecular damage repair-, energy-, mitochondrial function-, and neuronal plasticity-associated pathways. This review critically evaluates these findings and points out the age-associated role of sirtuins

    Revisiting Metal Toxicity in Neurodegenerative Diseases and Stroke: Therapeutic Potential

    Get PDF
    Excessive accumulation of pro-oxidant metals, observed in affected brain regions, has consistently been implicated as a contributor to the brain pathology including neurodegenerative diseases and acute injuries such as stroke. Furthermore, the potential interactions between metal toxicity and other commonly associated etiological factors, such as misfolding/aggregation of amyloidogenic proteins or genomic damage, are poorly understood. Decades of research provide compelling evidence implicating metal overload in neurological diseases and stroke. However, the utility of metal toxicity as a therapeutic target is controversial, possibly due to a lack of comprehensive understanding of metal dyshomeostasismediated neuronal pathology. In this article, we discuss the current understanding of metal toxicity and the challenges associated with metal-targeted therapies.Excessive accumulation of pro-oxidant metals, observed in affected brain regions, has consistently been implicated as a contributor to the brain pathology including neurodegenerative diseases and acute injuries such as stroke. Furthermore, the potential interactions between metal toxicity and other commonly associated etiological factors, such as misfolding/aggregation of amyloidogenic proteins or genomic damage, are poorly understood. Decades of research provide compelling evidence implicating metal overload in neurological diseases and stroke. However, the utility of metal toxicity as a therapeutic target is controversial, possibly due to a lack of comprehensive understanding of metal dyshomeostasismediated neuronal pathology. In this article, we discuss the current understanding of metal toxicity and the challenges associated with metal-targeted therapies

    Exercise Increases Markers of Spermatogenesis in Rats Selectively Bred for Low Running Capacity

    Get PDF
    The oxidative stress effect of exercise training on testis function is under debate. In the present study we used a unique rat model system developed by artificial selection for low and high intrinsic running capacity (LCR and HCR, respectively) to evaluate the effects of exercise training on apoptosis and spermatogenesis in testis. Twenty-four 13-month-old male rats were assigned to four groups: control LCR (LCR-C), trained LCR (LCR-T), control HCR (HCR-C), and trained HCR (HCR-T). Ten key proteins connecting aerobic exercise capacity and general testes function were assessed, including those that are vital for mitochondrial biogenesis. The VO2 max of LCR-C group was about 30% lower than that of HCR-C rats, and the SIRT1 levels were also significantly lower than HCR-C. Twelve weeks of training significantly increased maximal oxygen consumption in LCR by nearly 40% whereas HCR remained unchanged. LCR-T had significantly higher levels of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1α), decreased levels of reactive oxygen species and increased acetylated p53 compared to LCR-C, while training produced no significant changes for these measures in HCR rats. BAX and Blc-2 were not different among all four groups. The levels of outer dense fibers -1 (Odf-1), a marker of spermatogenesis, increased in LCR-T rats, but decreased in HCR-TR rats. Moreover, exercise training increased the levels of lactate dehydrogenase C (LDHC) only in LCR rats. These data suggest that rats with low inborn exercise capacity can increase whole body oxygen consumption and running exercise capacity with endurance training and, in turn, increase spermatogenesis function via reduction in ROS and heightened activity of p53 in testes

    New Perspectives on Oxidized Genome Damage and Repair Inhibition by Pro-Oxidant Metals in Neurological Diseases

    Get PDF
    The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases.The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases

    Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells

    Get PDF
    Inflammation is associated with oxidative stress and characterized by elevated levels of damage-associated molecular pattern (DAMP) molecules released from injured or even living cells into the surrounding microenvironment. One of these endogenous danger signals is the extracellular mitochondrial DNA (mtDNA) containing evolutionary conserved unmethylated CpG repeats. Increased levels of reactive oxygen species (ROS) generated by recruited inflammatory cells modify mtDNA oxidatively resulting primarily in accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) lesions. In this study, we examined the impact of native and oxidatively modified mtDNAs on the phenotypic and functional properties of plasmacytoid dendritic cells (pDCs), which possess a fundamental role in the regulation of inflammation and T cell immunity. Treatment of human primary pDCs with native mtDNA up-regulated the expression of a co-stimulatory molecule (CD86), a specific maturation marker (CD83), and a main antigen-presenting molecule (HLA-DQ) on the cell surface, as well as increased TNF-α and IL-8 production from the cells. These effects were more apparent when pDCs were exposed to oxidatively modified mtDNA. Neither native nor oxidized mtDNA molecules were able to induce interferon (IFN)-α secretion from pDCs unless they formed a complex with human cathelicidin LL-37, an antimicrobial peptide. Interestingly, simultaneous administration of a Toll-like receptor (TLR)9 antagonist abrogated the effects of both native and oxidized mtDNAs on human pDCs. In a murine model, oxidized mtDNA also proved a more potent activator of pDCs compared to the native form, except for induction of IFN-α production. Collectively, we demonstrate here for the first time that elevated levels of 8-oxoG bases in the extracellular mtDNA induced by oxidative stress increase the immunostimulatory capacity of mtDNA on pDCs

    SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle

    Get PDF
    Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1-regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1-regulated pathways and overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing.National Strength and Conditioning Association OTKA. Grant Number: 112810 Hungarian Academy of Science National Institute of Environmental Health Sciences. Grant Number: ES00359
    • …
    corecore