12 research outputs found
The Soviet Union and the Post-World War II Foreign Policy of Czechoslovakia as Assessed by American Diplomacy
The article was submitted on 24.06.2020.ΠΡΡΠ»Π΅Π΄ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΈΠΌΠΈ Π΄ΠΈΠΏΠ»ΠΎΠΌΠ°ΡΠ°ΠΌΠΈ ΠΈ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ ΠΏΠΎ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ² ΠΈ ΠΏΡΠΈΠΎΡΠΈΡΠ΅ΡΠΎΠ² ΡΠ΅Ρ
ΠΎΡΠ»ΠΎΠ²Π°ΡΠΊΠΎΠΉ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΈ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠ΅ΠΌ ΠΡΠΎΡΠΎΠΉ ΠΌΠΈΡΠΎΠ²ΠΎΠΉ Π²ΠΎΠΉΠ½Ρ ΠΈ Π·Π°ΠΊΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ Ρ Π²Π»Π°ΡΡΠΈ Π² Π§Π‘Π ΠΊΠΎΠΌΠΌΡΠ½ΠΈΡΡΠΎΠ² Π² 1948 Π³. Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ ΡΠΎΡΡΠΎΠΈΡ Π² Π²ΡΡΠ²Π»Π΅Π½ΠΈΠΈ ΡΠΎΠ²Π΅ΡΡΠΊΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ° Π² ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ΅ Π‘Π¨Π Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π§Π΅Ρ
ΠΎΡΠ»ΠΎΠ²Π°ΠΊΠΈΠΈ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΡΡΠΎΠΉ ΡΡΡΠ°Π½Ρ Π² ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΡΠΎΠ²Π΅ΡΡΠΊΠΎ-Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΈΡ
ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΈ ΠΎΠ±ΡΠ΅Π³ΠΎ Π³Π΅Π½Π΅Π·ΠΈΡΠ° Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΠΉ Π²ΠΎΠΉΠ½Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π°Π·ΠΈΡΡΠ΅ΡΡΡ Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΠΈΠ· Π°ΡΡ
ΠΈΠ²ΠΎΠ² ΠΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΏΠ°ΡΡΠ°ΠΌΠ΅Π½ΡΠ° Π‘Π¨Π, ΠΠΈΠ½ΠΈΡΡΠ΅ΡΡΡΠ²Π° ΠΈΠ½ΠΎΡΡΡΠ°Π½Π½ΡΡ
Π΄Π΅Π» Π§Π΅ΡΡΠΊΠΎΠΉ Π Π΅ΡΠΏΡΠ±Π»ΠΈΠΊΠΈ, Π»ΠΈΡΠ½ΠΎΠ³ΠΎ Π°ΡΡ
ΠΈΠ²Π° ΠΏΠΎΡΠ»Π° Π. Π. Π¨ΡΠ΅ΠΉΠ½Π³Π°ΡΠ΄ΡΠ°. ΠΠ½ΠΎΠ³ΠΈΠ΅ ΠΈΠ· Π½ΠΈΡ
Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π²Π²ΠΎΠ΄ΡΡΡΡ Π² Π½Π°ΡΡΠ½ΡΠΉ ΠΎΠ±ΠΎΡΠΎΡ. ΠΡΡ
ΠΈΠ²Π½ΡΠ΅ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΎΠΉ ΠΏΡΠ΅ΡΡΡ. ΠΠ±ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ Π½Π° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π²ΠΎΡΠΏΡΠΈΡΡΠΈΠ΅ Π§Π΅Ρ
ΠΎΡΠ»ΠΎΠ²Π°ΠΊΠΈΠΈ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠ΅Π² Π½ΠΎΡΠΈΠ»ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΠ²ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ: Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ Π΄Π΅ΠΌΠΎΠΊΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ°ΡΡΠΈΠΉΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ»ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΡ Π΅Π΅ ΠΊ ΠΠ°ΠΏΠ°Π΄Ρ, Π½ΠΎ, Ρ Π΄ΡΡΠ³ΠΎΠΉ, ΠΏΡΠΎΡΠΎΠ²Π΅ΡΡΠΊΠ°Ρ Π²Π½Π΅ΡΠ½ΡΡ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ° ΠΏΠΎΠ±ΡΠΆΠ΄Π°Π»Π° ΠΏΠΎΠΌΠ΅ΡΠ°ΡΡ Π§Π‘Π Π·Π° Β«ΠΆΠ΅Π»Π΅Π·Π½ΡΠΌ Π·Π°Π½Π°Π²Π΅ΡΠΎΠΌΒ». ΠΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠ΅ Π²Π½Π΅ΡΠ½Π΅ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΡ ΡΠ΅Ρ
ΠΎΡΠ»ΠΎΠ²Π°ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²Π° Π²ΠΎ Π³Π»Π°Π²Π΅ Ρ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΡΡΠΎΠΌ Π. ΠΠΎΡΠ²Π°Π»ΡΠ΄ΠΎΠΌ ΠΏΡΡΠΌΠΎ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ Π§Π΅Ρ
ΠΎΡΠ»ΠΎΠ²Π°ΠΊΠΈΠΈ Π½Π° Π±Π»ΠΈΠ·ΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Ρ Π‘Π‘Π‘Π ΠΈ Π»ΠΎΡΠ»ΡΠ½ΠΎΡΡΡ ΠΡΠ΅ΠΌΠ»Ρ. ΠΠ·-Π·Π° ΡΡΠΎΠ³ΠΎ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΡΠ°Π³ΠΈ ΠΎΡ ΠΠΎΡΠΊΠ²Ρ Π±ΡΠ»Π° ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ ΡΠ΅ΡΡΠ΅Π·Π½ΡΡ
Π΄ΠΈΡΠΊΡΡΡΠΈΠΉ ΠΈ ΡΠ°Π·ΠΌΡΡΠ»Π΅Π½ΠΈΠΉ ΡΡΠ΅Π΄ΠΈ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΈΡ
ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠΎΠ² ΠΏΠΎ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌ. Π§Π°ΡΡΡ ΠΈΠ· Π½ΠΈΡ
Π±Π΅Π·ΠΎΠ³ΠΎΠ²ΠΎΡΠΎΡΠ½ΠΎ ΠΏΠΎΠΌΠ΅ΡΠ°Π»Π° Π§Π‘Π Π² ΡΡΠ΄ ΡΠΎΠ²Π΅ΡΡΠΊΠΈΡ
ΡΠ°ΡΠ΅Π»Π»ΠΈΡΠΎΠ², Π΄ΡΡΠ³Π°Ρ ΡΡΠΈΡΠ°Π»Π° Π΅Π΅ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΌ Π°Π²Π°Π½ΠΏΠΎΡΡΠΎΠΌ Π΄Π΅ΠΌΠΎΠΊΡΠ°ΡΠΈΠΈ Π² ΠΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΠ²ΡΠΎΠΏΠ΅. ΠΠΎΠ²ΠΎΡΠΎΡΠ½ΡΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ Π² Π²ΠΎΡΠΏΡΠΈΡΡΠΈΠΈ Π§Π‘Π ΡΡΠ°Π» Π΅Π΅ ΠΎΡΠΊΠ°Π· ΠΎΡ ΡΡΠ°ΡΡΠΈΡ Π² ΠΏΠ»Π°Π½Π΅ ΠΠ°ΡΡΠ°Π»Π»Π°, ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½Π½ΡΠΉ ΠΏΠΎΠ΄ ΠΏΡΡΠΌΡΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠ²Π΅ΡΡΠΊΠΎΠ³ΠΎ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²Π°. ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π΄Π»Ρ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠ΅Π² ΡΡΠ°Π»ΠΈ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΡΠΌΠΈ Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΡΠ°Π³ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»ΡΡΡΡΡ ΡΠΎΠ²Π΅ΡΡΠΊΠΎΠΌΡ Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΈ Π΅Π΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΎΡ ΠΠΎΡΠΊΠ²Ρ.This article examines how American diplomats and international relations experts perceived Czechoslovak foreign policy priorities between the end of World War II and the consolidation of communist power in the ΔSR in 1948. The purpose of the work is to identify the Soviet factor in US policy towards Czechoslovakia, the peculiarities of the perception of the country in the general context of Soviet-American relations and the genesis of the Cold War. The research is based on documentary sources from different archives: the US National Archives, the Archive of the Ministry of Foreign Affairs of the Czech Republic, and the archive of Ambassador L. A. Steinhardt at the Library of Congress. Archival documents are supplemented by articles from the American press. The author concludes that during this period, the perception of Czechoslovakia by the Americans was ambivalent and controversial. On the one hand, the existence of a democratic multi-party system made it possible to consider the ΔSR part of the West, but, on the other hand, its pro-Soviet foreign policy forced the Americans to regard it as being behind the Iron Curtain. The real foreign activities of the Czechoslovak government led by communist K. Gottwald directly demonstrated Czechoslovakiaβs orientation toward close relations with the USSR and its loyalty to the Kremlin. Because of this, the degree of Pragueβs dependence on Moscow was a subject of serious discussion and reflection among American experts in international relations. Some of them unconditionally placed the ΔSR among the Soviet satellites, while others considered it the last outpost of democracy in Eastern Europe. A turning point in the perception of Czechoslovakia was its refusal to participate in the Marshall Plan under the direct pressure of the Soviet government. After that, Pragueβs inability to resist Soviet pressure and its dependence on Moscow became apparent to the Americans
Regenerative Potential of Hydrogels for Intracerebral Hemorrhage: Lessons from Ischemic Stroke and Traumatic Brain Injury Research
From Wiley via Jisc Publications RouterHistory: received 2021-03-09, rev-recd 2021-06-15, pub-electronic 2021-07-01Article version: VoRPublication status: PublishedFunder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266Funder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265; Grant(s): EP/L014904/1Abstract: Intracerebral hemorrhage (ICH) is a deadly and debilitating type of stroke, caused by the rupture of cerebral blood vessels. To date, there are no restorative interventions approved for use in ICH patients, highlighting a critical unmet need. ICH shares some pathological features with other acute brain injuries such as ischemic stroke (IS) and traumatic brain injury (TBI), including the loss of brain tissue, disruption of the bloodβbrain barrier, and activation of a potent inflammatory response. New biomaterials such as hydrogels have been recently investigated for their therapeutic benefit in both experimental IS and TBI, owing to their provision of architectural support for damaged brain tissue and ability to deliver cellular and molecular therapies. Conversely, research on the use of hydrogels for ICH therapy is still in its infancy, with very few published reports investigating their therapeutic potential. Here, the published use of hydrogels in experimental ICH is commented upon and how approaches reported in the IS and TBI fields may be applied to ICH research to inform the design of future therapies is described. Unique aspects of ICH that are distinct from IS and TBI that should be considered when translating biomaterialβbased therapies between disease models are also highlighted
Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI.
Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8 nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner
Four MnCl<sub>2</sub> doses shown 24h post injection in marmoset brain.
<p>(A) Slices at the injection site (+6mm from bregma), and (B) slices 2 mm posterior to the injection site. Top: Raw images. Bottom: ROI of MnCl<sub>2</sub> hyperintensity automatically thresholded at 195 on the grey scale (256 levels). To the right of the figure, corresponding slices of the Atlas of Yuasa et al, 2010. The following structures are hyperintense: primary motor cortex M1 (Brodmann area 4), the primary sensory cortex (3a), the cingulum (23β24), the premotor cortex (6c,6d), the parietal cortex (5), corpus callosum, corona radiata, caudate (Cd), putamen (Pu), internal (IGP) and external (EGP) globus pallidus, thalamic nuclei (VL: ventral lateral, RT: reticular), the internal capsule (ic). Note that MnCl<sub>2</sub> follows the corpus callosum to the contralateral hemisphere most significantly with the highest doses.</p
Behavioral effect of MnCl<sub>2</sub> injection.
<p>Scores (number of pellets Β± SD) at the Valley (A,C) and Hill (B,D) staircase before (white) and after (black) contralateral (C,D) and ipsilateral (A,B) MnCl<sub>2</sub> injection. No behavioral deficits are observed after low concentrations (80 and 8 nmol), four days after injection. However the high concentration (400 nmol) caused a decrease in valley and hill scores only in the contralateral forelimb. Baseline scores are represented in white while 4 days post-injection of MnCl<sub>2</sub> scores are represented in black.</p
Statistical parametric maps of manganese in seven marmosets.
<p>Statistical parametric maps of manganese after injection (blue point) in the primary motor cortex (M1) of seven marmosets (p<0.005 uncorrected). A: Semitransparent three-dimensional MnCl<sub>2</sub> maps on the single brain template [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0138308#pone.0138308.ref032" target="_blank">32</a>]. Animals were imaged 24h after 8nmol MnCl<sub>2</sub> injection. MnCl<sub>2</sub> induced hyper intensity on brain T1-weighted images. C-G: coronal views. H-L: Corresponding marmoset brain atlas in coronal view. The following structures are marked: M1 primary motor cortex, Cd: Caudate nucleus, Pu: putamen, GP: globus pallidus, ic: internal capsule, cp: cerebral peduncule and SN: subtantia nigra, the cingulum, the premotor cortex (Brodmann area 6c,d), the parietal cortex (Brodmann area 5), corpus callosum, corona radiata, thalamic nuclei (VL: ventral lateral thalamic nucleus, VPL: ventral posterolateral thalamic nucleus, VPM: ventral posteromedial thalamic nucleus, CM: central medial thalamic nucleus, RT: reticular thalamic nucleus). Colored lines indicate the cortico-caudate tract (orange), the corticospinal tract (green), the cortico-putaminal tract (blue), and the cortico-thalamic tract (purple).</p
Marmoset staircase.
<p>Picture of Hill (A) and Valley (B) staircases attached to the front of the marmoset cage. Steps are baited for left forelimb testing.</p