12 research outputs found

    The Soviet Union and the Post-World War II Foreign Policy of Czechoslovakia as Assessed by American Diplomacy

    Get PDF
    The article was submitted on 24.06.2020.Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° восприятия амСриканскими Π΄ΠΈΠΏΠ»ΠΎΠΌΠ°Ρ‚Π°ΠΌΠΈ ΠΈ экспСртами ΠΏΠΎ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚ΠΎΠ² чСхословацкой внСшнСй ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠ΅ΠΌ Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ Π²ΠΎΠΉΠ½Ρ‹ ΠΈ Π·Π°ΠΊΡ€Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ Ρƒ власти Π² Π§Π‘Π  коммунистов Π² 1948 Π³. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ состоит Π² выявлСнии совСтского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Π² ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠ΅ БША Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ЧСхословакии, особСнностСй восприятия этой страны Π² контСкстС совСтско-амСриканских ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΈ ΠΎΠ±Ρ‰Π΅Π³ΠΎ гСнСзиса Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠΉ Π²ΠΎΠΉΠ½Ρ‹. ИсслСдованиС базируСтся Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… источников ΠΈΠ· Π°Ρ€Ρ…ΠΈΠ²ΠΎΠ² ГосударствСнного Π΄Π΅ΠΏΠ°Ρ€Ρ‚Π°ΠΌΠ΅Π½Ρ‚Π° БША, ΠœΠΈΠ½ΠΈΡΡ‚Π΅Ρ€ΡΡ‚Π²Π° иностранных Π΄Π΅Π» ЧСшской РСспублики, Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Ρ…ΠΈΠ²Π° посла Π›. А. Π¨Ρ‚Π΅ΠΉΠ½Π³Π°Ρ€Π΄Ρ‚Π°. МногиС ΠΈΠ· Π½ΠΈΡ… Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ вводятся Π² Π½Π°ΡƒΡ‡Π½Ρ‹ΠΉ ΠΎΠ±ΠΎΡ€ΠΎΡ‚. АрхивныС Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ‹ Π΄ΠΎΠΏΠΎΠ»Π½ΡΡŽΡ‚ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ амСриканской прСссы. ΠžΠ±ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°Π΅Ρ‚ΡΡ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π½Π° протяТСнии ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° восприятиС ЧСхословакии со стороны Π°ΠΌΠ΅Ρ€ΠΈΠΊΠ°Π½Ρ†Π΅Π² носило ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€: с ΠΎΠ΄Π½ΠΎΠΉ стороны, сохранСниС дСмократичСской ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ°Ρ€Ρ‚ΠΈΠΉΠ½ΠΎΠΉ систСмы позволяло ΠΎΡ‚Π½ΠΎΡΠΈΡ‚ΡŒ Π΅Π΅ ΠΊ Π—Π°ΠΏΠ°Π΄Ρƒ, Π½ΠΎ, с Π΄Ρ€ΡƒΠ³ΠΎΠΉ, просовСтская внСшняя ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠ° ΠΏΠΎΠ±ΡƒΠΆΠ΄Π°Π»Π° ΠΏΠΎΠΌΠ΅Ρ‰Π°Ρ‚ΡŒ Π§Π‘Π  Π·Π° Β«ΠΆΠ΅Π»Π΅Π·Π½Ρ‹ΠΌ занавСсом». ΠšΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ Π²Π½Π΅ΡˆΠ½Π΅ΠΏΠΎΠ»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ мСроприятия чСхословацкого ΠΏΡ€Π°Π²ΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π²ΠΎ Π³Π»Π°Π²Π΅ с коммунистом К. Π“ΠΎΡ‚Π²Π°Π»ΡŒΠ΄ΠΎΠΌ прямо дСмонстрировали ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ ЧСхословакии Π½Π° Π±Π»ΠΈΠ·ΠΊΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ с Π‘Π‘Π‘Π  ΠΈ Π»ΠΎΡΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠšΡ€Π΅ΠΌΠ»ΡŽ. Из-Π·Π° этого ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ зависимости ΠŸΡ€Π°Π³ΠΈ ΠΎΡ‚ ΠœΠΎΡΠΊΠ²Ρ‹ Π±Ρ‹Π»Π° ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠΌ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹Ρ… дискуссий ΠΈ Ρ€Π°Π·ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΠΉ срСди амСриканских спСциалистов ΠΏΠΎ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌ. Π§Π°ΡΡ‚ΡŒ ΠΈΠ· Π½ΠΈΡ… Π±Π΅Π·ΠΎΠ³ΠΎΠ²ΠΎΡ€ΠΎΡ‡Π½ΠΎ ΠΏΠΎΠΌΠ΅Ρ‰Π°Π»Π° Π§Π‘Π  Π² ряд совСтских сатСллитов, другая считала Π΅Π΅ послСдним аванпостом Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΠΈ Π² Восточной Π•Π²Ρ€ΠΎΠΏΠ΅. ΠŸΠΎΠ²ΠΎΡ€ΠΎΡ‚Π½Ρ‹ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ Π² восприятии Π§Π‘Π  стал Π΅Π΅ ΠΎΡ‚ΠΊΠ°Π· ΠΎΡ‚ участия Π² ΠΏΠ»Π°Π½Π΅ ΠœΠ°Ρ€ΡˆΠ°Π»Π»Π°, осущСствлСнный ΠΏΠΎΠ΄ прямым Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ совСтского руководства. ПослС этого для Π°ΠΌΠ΅Ρ€ΠΈΠΊΠ°Π½Ρ†Π΅Π² стали ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΌΠΈ Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠŸΡ€Π°Π³ΠΈ ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»ΡΡ‚ΡŒΡΡ совСтскому давлСнию ΠΈ Π΅Π΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΠœΠΎΡΠΊΠ²Ρ‹.This article examines how American diplomats and international relations experts perceived Czechoslovak foreign policy priorities between the end of World War II and the consolidation of communist power in the ČSR in 1948. The purpose of the work is to identify the Soviet factor in US policy towards Czechoslovakia, the peculiarities of the perception of the country in the general context of Soviet-American relations and the genesis of the Cold War. The research is based on documentary sources from different archives: the US National Archives, the Archive of the Ministry of Foreign Affairs of the Czech Republic, and the archive of Ambassador L. A. Steinhardt at the Library of Congress. Archival documents are supplemented by articles from the American press. The author concludes that during this period, the perception of Czechoslovakia by the Americans was ambivalent and controversial. On the one hand, the existence of a democratic multi-party system made it possible to consider the ČSR part of the West, but, on the other hand, its pro-Soviet foreign policy forced the Americans to regard it as being behind the Iron Curtain. The real foreign activities of the Czechoslovak government led by communist K. Gottwald directly demonstrated Czechoslovakia’s orientation toward close relations with the USSR and its loyalty to the Kremlin. Because of this, the degree of Prague’s dependence on Moscow was a subject of serious discussion and reflection among American experts in international relations. Some of them unconditionally placed the ČSR among the Soviet satellites, while others considered it the last outpost of democracy in Eastern Europe. A turning point in the perception of Czechoslovakia was its refusal to participate in the Marshall Plan under the direct pressure of the Soviet government. After that, Prague’s inability to resist Soviet pressure and its dependence on Moscow became apparent to the Americans

    Regenerative Potential of Hydrogels for Intracerebral Hemorrhage: Lessons from Ischemic Stroke and Traumatic Brain Injury Research

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-03-09, rev-recd 2021-06-15, pub-electronic 2021-07-01Article version: VoRPublication status: PublishedFunder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266Funder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265; Grant(s): EP/L014904/1Abstract: Intracerebral hemorrhage (ICH) is a deadly and debilitating type of stroke, caused by the rupture of cerebral blood vessels. To date, there are no restorative interventions approved for use in ICH patients, highlighting a critical unmet need. ICH shares some pathological features with other acute brain injuries such as ischemic stroke (IS) and traumatic brain injury (TBI), including the loss of brain tissue, disruption of the blood–brain barrier, and activation of a potent inflammatory response. New biomaterials such as hydrogels have been recently investigated for their therapeutic benefit in both experimental IS and TBI, owing to their provision of architectural support for damaged brain tissue and ability to deliver cellular and molecular therapies. Conversely, research on the use of hydrogels for ICH therapy is still in its infancy, with very few published reports investigating their therapeutic potential. Here, the published use of hydrogels in experimental ICH is commented upon and how approaches reported in the IS and TBI fields may be applied to ICH research to inform the design of future therapies is described. Unique aspects of ICH that are distinct from IS and TBI that should be considered when translating biomaterial‐based therapies between disease models are also highlighted

    Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI.

    No full text
    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8 nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner

    Four MnCl<sub>2</sub> doses shown 24h post injection in marmoset brain.

    No full text
    <p>(A) Slices at the injection site (+6mm from bregma), and (B) slices 2 mm posterior to the injection site. Top: Raw images. Bottom: ROI of MnCl<sub>2</sub> hyperintensity automatically thresholded at 195 on the grey scale (256 levels). To the right of the figure, corresponding slices of the Atlas of Yuasa et al, 2010. The following structures are hyperintense: primary motor cortex M1 (Brodmann area 4), the primary sensory cortex (3a), the cingulum (23–24), the premotor cortex (6c,6d), the parietal cortex (5), corpus callosum, corona radiata, caudate (Cd), putamen (Pu), internal (IGP) and external (EGP) globus pallidus, thalamic nuclei (VL: ventral lateral, RT: reticular), the internal capsule (ic). Note that MnCl<sub>2</sub> follows the corpus callosum to the contralateral hemisphere most significantly with the highest doses.</p

    Behavioral effect of MnCl<sub>2</sub> injection.

    No full text
    <p>Scores (number of pellets Β± SD) at the Valley (A,C) and Hill (B,D) staircase before (white) and after (black) contralateral (C,D) and ipsilateral (A,B) MnCl<sub>2</sub> injection. No behavioral deficits are observed after low concentrations (80 and 8 nmol), four days after injection. However the high concentration (400 nmol) caused a decrease in valley and hill scores only in the contralateral forelimb. Baseline scores are represented in white while 4 days post-injection of MnCl<sub>2</sub> scores are represented in black.</p

    Statistical parametric maps of manganese in seven marmosets.

    No full text
    <p>Statistical parametric maps of manganese after injection (blue point) in the primary motor cortex (M1) of seven marmosets (p<0.005 uncorrected). A: Semitransparent three-dimensional MnCl<sub>2</sub> maps on the single brain template [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0138308#pone.0138308.ref032" target="_blank">32</a>]. Animals were imaged 24h after 8nmol MnCl<sub>2</sub> injection. MnCl<sub>2</sub> induced hyper intensity on brain T1-weighted images. C-G: coronal views. H-L: Corresponding marmoset brain atlas in coronal view. The following structures are marked: M1 primary motor cortex, Cd: Caudate nucleus, Pu: putamen, GP: globus pallidus, ic: internal capsule, cp: cerebral peduncule and SN: subtantia nigra, the cingulum, the premotor cortex (Brodmann area 6c,d), the parietal cortex (Brodmann area 5), corpus callosum, corona radiata, thalamic nuclei (VL: ventral lateral thalamic nucleus, VPL: ventral posterolateral thalamic nucleus, VPM: ventral posteromedial thalamic nucleus, CM: central medial thalamic nucleus, RT: reticular thalamic nucleus). Colored lines indicate the cortico-caudate tract (orange), the corticospinal tract (green), the cortico-putaminal tract (blue), and the cortico-thalamic tract (purple).</p

    Marmoset staircase.

    No full text
    <p>Picture of Hill (A) and Valley (B) staircases attached to the front of the marmoset cage. Steps are baited for left forelimb testing.</p
    corecore