44 research outputs found

    Positively Charged Amphiphilic Polymers Based on Poly( N

    No full text

    Stimuli-responsive poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) triblock copolymers and complexation with poly(acrylic acid) at low pH

    No full text
    The self-organization of the double hydrophilic triblock copolymer poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide), PEO-b-P2VP-b-PEO, was investigated in dilute aqueous solution under several experimental conditions using turbidimetry, as well as static and dynamic light scattering. As a result of the temperature-sensitive properties of the end PEO blocks and the p H-responsive properties of the middle P2VP block, the formation of large star-like micellar nanostructures is observed at high p H, while at low p H, but in the presence of salt and at high temperature, flower-like micelles are formed. Moreover, the viscosimetric and dynamic light scattering studies at low p H revealed that micelle-like nanostructures are formed upon mixing the triblock copolymer with poly(acrylic acid), PAA, due to hydrogen bonding interpolymer complexation

    Hydrophobic Interactions of Poly( N

    No full text

    Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes; NMR and MRI relaxometry

    No full text
    The ability to encapsulate hydrophobic ferrites in colloidal superparticle structures of an a-telechelic hexadecyl-functionalized poly(methacrylic acid) (C16H33-PMAA) polymer with a linear architecture was investigated and compared with that of two amphiphilic comb-type water-soluble copolymers, namely, P(ANa-co-DAAm) and P(MANa-co-DMA), which are comprised of a poly(sodium acrylate) or poly(sodium methacrylate) backbone and pendent dodecyl acrylamide or dodecyl methacrylate chains, respectively. In the case of C16H33-PMAA, the pH-sensitive self-assembly behavior, which was studied through Nile Red probing and TEM, was related to its encapsulation properties. Hydrophobic MFe2O4 nanoparticles coated with oleylamine (MFe2O4@OAm MNPs, where M = Co, Mn, Ni) with a similar shape and size (similar to 9 nm) and magnetization values of 87.4, 63.1 and 55.0 emu g(-1) for CoFe2O4@OAm, MnFe2O4@OAm and NiFe2O4@OAm, respectively, were successfully encapsulated into the hydrophobic cores of spherical micellar structures formed by the copolymers in an aqueous solution through a solvent mixing procedure. The synthesized magnetic colloidal superparticles fell in the static dephasing regime (SDR). NMR relaxivity measurements of MFe2O4@P(ANa-co-DAAm), MFe2O4@P(MANa-co-DMA) and MFe2O4@C16H33-PMAA at pH = 4.5 and pH = 7 (where M = Co, Mn, Ni) at 11.7 T were recorded and the transverse relaxivity (r(2)) (mM(-1) s(-1)) was determined. Among all, the CoFe2O4@polymers demonstrated the highest r(2) relaxivity values, ranging from 61.6 for CoFe2O4@C16H33-PMAA (pH = 7) to 316.0 mM(-1) s(-1) for CoFe2O4@P(ANa-co- DAAm). The relaxation efficiency (r(1) and r(2)) of CoFe2O4@P(ANa-co-DAAm) was investigated further by magnetic resonance imaging (MRI) at 1.5 T and 3 T and the r(2)/r(1) ratios were found to be 16.5 and 18.2, respectively, indicating its potential use as a T-2 contrast agent

    Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications

    No full text
    Adequately designed multiresponsive water-soluble graft copolymers were used to serve as a multifunctional polymeric platform for the encapsulation and transfer in aqueous media of hydrophobic magnetic nanoparticles (MNPs). The backbone of the graft copolymers was composed of hydrophilic sodium methacrylate units, hydrophobic dodecyl methacrylate units, and luminescent quinoline-based units, while either the homopolymer poly(N-isopropylacrylamide) or a poly(N,N-dimethylacrylamide-co-N-isopropylacrylamide) copolymer was used as thermosensitive pendent side chains. The polymeric platform forms micellar-type assemblies in aqueous solution, and exhibits pH-responsive luminescent properties and a lower critical solution temperature behavior in water. Depending on the design of the side chains, the cloud point temperatures were determined at 38 and 42 °C, close or slightly above body temperature (37 °C). Above the critical micelle concentration (CMC), both graft copolymers can effectively stabilize in aqueous media as magnetic colloidal superparticles (MSPs), oleylamine-coated MnFe2O4 MNPs, as well as 1:1 mixture of oleylamine-coated MnFe2O4 and CoFe2O4 MNPs. When CoFe2O4 particles were mixed with MnFeO4 in equal amounts, the specific loss power increased significantly, while an opposite trend was observed in the magnetic resonance imaging (MRI) studies, probably due to the anisotropy of cobalt. As a consequence, fine-tuning of the chemical structure of the copolymers and the composition of the MSPs can lead to materials that are able to act simultaneously as luminescent, hyperthermia, and contrast MRI agents. © 2016 American Chemical Society

    Evaluation of the release characteristics of covalently attached or electrostatically bound biocidal polymers utilizing SERS and UV-Vis absorption

    No full text
    In this work, biocidal polymers with antimicrobial quaternized ammonium groups introduced in the polymer biocidal chains either through covalent attachment or electrostatic interaction have been separately incorporated in a poly (methyl methacrylate) polymer matrix. The objective of present study was to highlight the release characteristics of biocidal polymers, primarily in saline but also in water ethanol solutions, utilizing UV-Vis absorption and Surface Enhanced Raman Scattering (SERS). It is shown that through the combination of UV-Vis and SERS techniques, upon the release process, it is possible the discrimination of the polymeric backbone and the electrostatically bound biocidal species. Moreover, it is found that electrostatically bound and covalently attached biocidal species show different SERS patterns. The long term aim is the development of antimicrobial polymeric materials containing both ionically bound and covalently attached quaternary ammonium thus achieving a dual functionality in a single component polymeric design

    Comparative Assessment of the Dyeing Process for Pristine and Modified Cotton Fabrics towards the Reduction of the Environmental Fingerprint

    No full text
    Though an important and chronic source of dyes released to the environment, the determination of the release of dyes that occurs during household or industrial washing is usually disregarded. The main scope of this study is to reveal the extent of dye release through washing, and to understand if the modification of cotton fabrics with cationic polymers could reduce it. Modified cotton fabrics, dyed with Acid Blue 281 (AB) or by a mixture of the reactive dyes Novacron Yellow S-3R (NY), Novacron Ruby S-3B (NR) and Novacron Dark Blue S-GL (NDB), underwent a certified washing process. The dyed fabrics were analyzed colorimetrically, while the washing waters were analyzed spectroscopically, via UV/Vis absorption and surface enhanced Raman scattering (SERS). In the modified fabrics dyed with the acid dye, an increased dye uptake was noticed that exhibited a color intensity of K/S~16, compared to K/S~0.45 of the unmodified fabrics. The corresponding normalized dye release (dye concentration/color intensity factor) in the wash water was ~1.6 for the modified fabrics, compared to ~6.5 in the case of the unmodified fabrics, indicating the significance of cotton modification on both the dye uptake and dye release during washing. In the fabrics dyed with a mixture of selected reactive dyes, the color uptake of modified (K/S~10) was also increased compared with unmodified fabrics (K/S~4.5). An important observation, is that in the case of the dyeing of the reactive dyes mixture, a selectivity on the part of the dye uptake was noticed, since the contribution of NY (yellow) is higher compared to that of the blue (positive value of color indicator coordinate (b)); however, this also resulted in an increased NY dye release during washing. The findings of this study could contribute to the dye release problem control due to fabric washing, and to the understanding of any potential selectivity on the part of dye–cotton interactions

    Comparative Assessment of the Dyeing Process for Pristine and Modified Cotton Fabrics towards the Reduction of the Environmental Fingerprint

    No full text
    Though an important and chronic source of dyes released to the environment, the determination of the release of dyes that occurs during household or industrial washing is usually disregarded. The main scope of this study is to reveal the extent of dye release through washing, and to understand if the modification of cotton fabrics with cationic polymers could reduce it. Modified cotton fabrics, dyed with Acid Blue 281 (AB) or by a mixture of the reactive dyes Novacron Yellow S-3R (NY), Novacron Ruby S-3B (NR) and Novacron Dark Blue S-GL (NDB), underwent a certified washing process. The dyed fabrics were analyzed colorimetrically, while the washing waters were analyzed spectroscopically, via UV/Vis absorption and surface enhanced Raman scattering (SERS). In the modified fabrics dyed with the acid dye, an increased dye uptake was noticed that exhibited a color intensity of K/S~16, compared to K/S~0.45 of the unmodified fabrics. The corresponding normalized dye release (dye concentration/color intensity factor) in the wash water was ~1.6 for the modified fabrics, compared to ~6.5 in the case of the unmodified fabrics, indicating the significance of cotton modification on both the dye uptake and dye release during washing. In the fabrics dyed with a mixture of selected reactive dyes, the color uptake of modified (K/S~10) was also increased compared with unmodified fabrics (K/S~4.5). An important observation, is that in the case of the dyeing of the reactive dyes mixture, a selectivity on the part of the dye uptake was noticed, since the contribution of NY (yellow) is higher compared to that of the blue (positive value of color indicator coordinate (b)); however, this also resulted in an increased NY dye release during washing. The findings of this study could contribute to the dye release problem control due to fabric washing, and to the understanding of any potential selectivity on the part of dye–cotton interactions
    corecore