5 research outputs found

    Clinical pre-test probability for obstructive coronary artery disease: insights from the European DISCHARGE pilot study.

    Get PDF
    To test the accuracy of clinical pre-test probability (PTP) for prediction of obstructive coronary artery disease (CAD) in a pan-European setting. Patients with suspected CAD and stable chest pain who were clinically referred for invasive coronary angiography (ICA) or computed tomography (CT) were included by clinical sites participating in the pilot study of the European multi-centre DISCHARGE trial. PTP of CAD was determined using the Diamond-Forrester (D+F) prediction model initially introduced in 1979 and the updated D+F model from 2011. Obstructive coronary artery disease (CAD) was defined by one at least 50% diameter coronary stenosis by both CT and ICA. In total, 1440 patients (654 female, 786 male) were included at 25 clinical sites from May 2014 until July 2017. Of these patients, 725 underwent CT, while 715 underwent ICA. Both prediction models overestimated the prevalence of obstructive CAD (31.7%, 456 of 1440 patients, PTP: initial D+F 58.9% (28.1-90.6%), updated D+F 47.3% (34.2-59.9%), both p < 0.001), but overestimation of disease prevalence was higher for the initial D+F (p < 0.001). The discriminative ability was higher for the updated D+F 2011 (AUC of 0.73 95% confidence interval [CI] 0.70-0.76 versus AUC of 0.70 CI 0.67-0.73 for the initial D+F; p < 0.001; odds ratio (or) 1.55 CI 1.29-1.86, net reclassification index 0.11 CI 0.05-0.16, p < 0.001). Clinical PTP calculation using the initial and updated D+F prediction models relevantly overestimates the actual prevalence of obstructive CAD in patients with stable chest pain clinically referred for ICA and CT suggesting that further refinements to improve clinical decision-making are needed. https://www.clinicaltrials.gov/ct2/show/NCT02400229 KEY POINTS: • Clinical pre-test probability calculation using the initial and updated D+F model overestimates the prevalence of obstructive CAD identified by ICA and CT. • Overestimation of disease prevalence is higher for the initial D+F compared with the updated D+F. • Diagnostic accuracy of PTP assessment varies strongly between different clinical sites throughout Europe

    Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects

    No full text
    BACKGROUND: Venoms and the toxins they contain represent molecular adaptations that have evolved on numerous occasions throughout the animal kingdom. However, the processes that shape venom protein evolution are poorly understood because of the scarcity of whole-genome data available for comparative analyses of venomous species. RESULTS: We performed a broad comparative toxicogenomic analysis to gain insight into the genomic mechanisms of venom evolution in robber flies (Asilidae). We first sequenced a high-quality draft genome of the hymenopteran hunting robber fly Dasypogon diadema, analysed its venom by a combined proteotranscriptomic approach, and compared our results with recently described robber fly venoms to assess the general composition and major components of asilid venom. We then applied a comparative genomics approach, based on 1 additional asilid genome, 10 high-quality dipteran genomes, and 2 lepidopteran outgroup genomes, to reveal the evolutionary mechanisms and origins of identified venom proteins in robber flies. CONCLUSIONS: While homologues were identified for 15 of 30 predominant venom protein in the non-asilid genomes, the remaining 15 highly expressed venom proteins appear to be unique to robber flies. Our results reveal that the venom of D. diadema likely evolves in a multimodal fashion comprising (i) neofunctionalization after gene duplication, (ii) expression-dependent co-option of proteins, and (iii) asilid lineage-specific orphan genes with enigmatic origin. The role of such orphan genes is currently being disputed in evolutionary genomics but has not been discussed in the context of toxin evolution. Our results display an unexpected dynamic venom evolution in asilid insects, which contrasts the findings of the only other insect toxicogenomic evolutionary analysis, in parasitoid wasps (Hymenoptera), where toxin evolution is dominated by single gene co-option. These findings underpin the significance of further genomic studies to cover more neglected lineages of venomous taxa and to understand the importance of orphan genes as possible drivers for venom evolution

    Effect of iterative reconstruction and temporal averaging on contour sharpness in dynamic myocardial CT perfusion: Sub-analysis of the prospective 4D CT perfusion pilot study.

    Get PDF
    PURPOSE:Myocardial computed tomography perfusion (CTP) allows the assessment of the functional relevance of coronary artery stenosis. This study investigates to what extent the contour sharpness of sequences acquired by dynamic myocardial CTP is influenced by the following noise reduction methods: temporal averaging and adaptive iterative dose reduction 3D (AIDR 3D). MATERIALS AND METHODS:Dynamic myocardial CT perfusion was conducted in 29 patients at a dose level of 9.5±2.0 mSv and was reconstructed with both filtered back projection (FBP) and strong levels of AIDR 3D. Temporal averaging to reduce noise was performed as a post-processing step by combining two, three, four, six and eight original consecutive 3D datasets. We evaluated the contour sharpness at four distinct edges of the left-ventricular myocardium based on two different approaches: the distance between 25% and 75% of the maximal grey value (d) and the slope in the contour (m). RESULTS:Iterative reconstruction reduced contour sharpness: both measures of contour sharpness performed better for FBP than for AIDR 3D (d = 1.7±0.4 mm versus 2.0±0.5 mm, p>0.059 at all edges; m = 255.9±123.9 HU/mm versus 160.6±123.5 HU/mm; p0.052 at all edges and for m p<0.001 at all edges). CONCLUSION:The use of both temporal averaging and iterative reconstruction degrades objective contour sharpness parameters of dynamic myocardial CTP. Thus, further advances in image processing are needed to optimise contour sharpness of 4D myocardial CTP
    corecore