221 research outputs found

    Dynamics of a self-gravitating thin cosmic string

    Full text link
    We assume that a self-gravitating thin string can be locally described by what we shall call a smoothed cone. If we impose a specific constraint on the model of the string, then its central line obeys the Nambu-Goto equations. If no constraint is added, then the worldsheet of the central line is a totally geodesic surface.Comment: 20 pages, latex, 1 figure, final versio

    Low-speed investigation of the effect of small canard surfaces on the directional stability of a sweptback-wing fighter-airline model

    Get PDF
    Low-speed free flight tunnel testing of swept wing fighter aircraft for determining effect of small canard surfaces on directional stabilit

    Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation

    Full text link
    The Bogoliubov procedure in quantum field theory is used to describe a relativistic almost ideal Bose gas at zero temperature. Special attention is given to the study of a vortex. The radius of the vortex in the field description is compared to that obtained in the relativistic fluid approximation. The Kelvin waves are studied and, for long wavelengths, the dispersion relation is obtained by an asymptotic matching method and compared with the non relativistic result.Comment: 20 page

    Dynamics of a string coupled to gravitational waves II - Perturbations propagate along an infinite Nambu-Goto string

    Get PDF
    The perturbative modes propagating along an infinite string are investigated within the framework of the gauge invariant perturbation formalism on a spacetime containing a self-gravitating straight string with a finite thickness. These modes are not included in our previous analysis. We reconstruct the perturbation formalism to discuss these modes and solve the linearized Einstein equation within the first order with respect to the string oscillation amplitude. In the thin string case, we show that the oscillations of an infinite string must involve the propagation of cosmic string traveling wave.Comment: 4 pages (2 columns), no figure, revtex with multicol.sty. To appear in Physical Review

    Macrodimers: ultralong range Rydberg molecules

    Full text link
    We study long range interactions between two Rydberg atoms and predict the existence of ultralong range Rydberg dimers with equilibrium distances of many thousand Bohr radii. We calculate the dispersion coefficients C5C_{5}, C6C_{6} and C8C_{8} for two rubidium atoms in the same excited level npnp, and find that they scale like n8n^{8}, n11n^{11} and n15n^{15}, respectively. We show that for certain molecular symmetries, these coefficients lead to long range potential wells that can support molecular bound levels. Such macrodimers would be very sensitive to their environment, and could probe weak interactions. We suggest experiments to detect these macrodimers.Comment: 4 pages, submitted to PR

    D-Dimensional Radiative Plasma: A Kinetic Approach

    Get PDF
    The covariant kinetic approach for the radiative plasma, a mixture of a relativistic moving gas plus radiation quanta (photons, neutrinos, or gravitons) is generalized to D spatial dimensions. The operational and physical meaning of Eckart's temperature is reexamined and the D-dimensional expressions for the transport coefficients (heat conduction, bulk and shear viscosity) are explicitly evaluated to first order in the mean free time of the radiation quanta. Weinberg's conclusion that the mixture behaves like a relativistic imperfect simple fluid (in Eckart's formulation) depends neither on the number of spatial dimensions nor on the details of the collisional term. The case of Thomson scaterring is studied in detail, and some consequences for higher dimensional cosmologies are also discussed.Comment: 28 pages, 1 figure, uses REVTE

    Open Science in Software Engineering

    Full text link
    Open science describes the movement of making any research artefact available to the public and includes, but is not limited to, open access, open data, and open source. While open science is becoming generally accepted as a norm in other scientific disciplines, in software engineering, we are still struggling in adapting open science to the particularities of our discipline, rendering progress in our scientific community cumbersome. In this chapter, we reflect upon the essentials in open science for software engineering including what open science is, why we should engage in it, and how we should do it. We particularly draw from our experiences made as conference chairs implementing open science initiatives and as researchers actively engaging in open science to critically discuss challenges and pitfalls, and to address more advanced topics such as how and under which conditions to share preprints, what infrastructure and licence model to cover, or how do it within the limitations of different reviewing models, such as double-blind reviewing. Our hope is to help establishing a common ground and to contribute to make open science a norm also in software engineering.Comment: Camera-Ready Version of a Chapter published in the book on Contemporary Empirical Methods in Software Engineering; fixed layout issue with side-note

    Light Rays at Optical Black Holes in Moving Media

    Full text link
    Light experiences a non-uniformly moving medium as an effective gravitational field, endowed with an effective metric tensor g~μν=ημν+(n21)uμuν\tilde{g}^{\mu \nu}=\eta^{\mu \nu}+(n^2-1)u^\mu u^\nu, nn being the refractive index and uμu^\mu the four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A {\bf 60}, 4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to generate an 'optical black hole'. In the Leonhardt-Piwnicki model, only a vortex flow was considered. It was later pointed out by Visser [Phys. Rev. Lett. {\bf 85}, 5252 (2000)] that in order to form a proper optical black hole containing an event horizon, it becomes necessary to add an inward radial velocity component to the vortex flow. In the present paper we undertake this task: we consider a full spiral flow, consisting of a vortex component plus a radially infalling component. Light propagates in such a dielectric medium in a way similar to that occurring around a rotating black hole. We calculate, and show graphically, the effective potential versus the radial distance from the vortex singularity, and show that the spiral flow can always capture light in both a positive, and a negative, inverse impact parameter interval. The existence of a genuine event horizon is found to depend on the strength of the radial flow, relative to the strength of the azimuthal flow. A limitation of our fluid model is that it is nondispersive.Comment: 30 pages, LaTeX, 4 ps figures. Expanded discussion especially in section 6; 5 new references. Version to appear in Phys. Rev.

    Dynamics of a string coupled to gravitational waves - Gravitational wave scattering by a Nambu-Goto straight string

    Get PDF
    We study the perturbative dynamics of an infinite gravitating Nambu-Goto string within the general-relativistic perturbation framework. We develop the gauge invariant metric perturbation on a spacetime containing a self-gravitating straight string with a finite thickness and solve the linearized Einstein equation. In the thin string case, we show that the string does not emit gravitational waves by its free oscillation in the first order with respect to its oscillation amplitude, nevertheless the string actually bends when the incidental gravitational waves go through it.Comment: Published in Physical Review D. Some explanations are changed to clarify our point
    corecore