326 research outputs found
Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation
The Bogoliubov procedure in quantum field theory is used to describe a
relativistic almost ideal Bose gas at zero temperature. Special attention is
given to the study of a vortex. The radius of the vortex in the field
description is compared to that obtained in the relativistic fluid
approximation. The Kelvin waves are studied and, for long wavelengths, the
dispersion relation is obtained by an asymptotic matching method and compared
with the non relativistic result.Comment: 20 page
Dynamics of a self-gravitating thin cosmic string
We assume that a self-gravitating thin string can be locally described by
what we shall call a smoothed cone. If we impose a specific constraint on the
model of the string, then its central line obeys the Nambu-Goto equations. If
no constraint is added, then the worldsheet of the central line is a totally
geodesic surface.Comment: 20 pages, latex, 1 figure, final versio
Statefinder -- a new geometrical diagnostic of dark energy
We introduce a new cosmological diagnostic pair called
Statefinder. The Statefinder is dimensionless and, like the Hubble and
deceleration parameters and , is constructed from the scale factor
of the Universe and its derivatives only. The parameter forms the next
step in the hierarchy of geometrical cosmological parameters used to study the
Universe after and , while the parameter is a linear combination
of and chosen in such a way that it does not depend upon the dark
energy density . The Statefinder pair is
algebraically related to the the dark energy pressure-to-energy ratio
and its time derivative, and sheds light on the nature of dark
energy/quintessence. Its properties allow to usefully differentiate between
different forms of dark energy with constant and variable , including a
cosmological constant (). The Statefinder pair can be determined to
very good accuracy from a SNAP type experiment.Comment: 7 pages, 3 figures. Final version to be published in JETP Lett.,
presentation shortened, references added and updated, consideration of brane
cosmological models included, conclusions unchange
Light Rays at Optical Black Holes in Moving Media
Light experiences a non-uniformly moving medium as an effective gravitational
field, endowed with an effective metric tensor , being the refractive index and the
four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A {\bf 60},
4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to
generate an 'optical black hole'. In the Leonhardt-Piwnicki model, only a
vortex flow was considered. It was later pointed out by Visser [Phys. Rev.
Lett. {\bf 85}, 5252 (2000)] that in order to form a proper optical black hole
containing an event horizon, it becomes necessary to add an inward radial
velocity component to the vortex flow. In the present paper we undertake this
task: we consider a full spiral flow, consisting of a vortex component plus a
radially infalling component. Light propagates in such a dielectric medium in a
way similar to that occurring around a rotating black hole. We calculate, and
show graphically, the effective potential versus the radial distance from the
vortex singularity, and show that the spiral flow can always capture light in
both a positive, and a negative, inverse impact parameter interval. The
existence of a genuine event horizon is found to depend on the strength of the
radial flow, relative to the strength of the azimuthal flow. A limitation of
our fluid model is that it is nondispersive.Comment: 30 pages, LaTeX, 4 ps figures. Expanded discussion especially in
section 6; 5 new references. Version to appear in Phys. Rev.
Geometry of Deformations of Relativistic Membranes
A kinematical description of infinitesimal deformations of the worldsheet
spanned in spacetime by a relativistic membrane is presented. This provides a
framework for obtaining both the classical equations of motion and the
equations describing infinitesimal deformations about solutions of these
equations when the action describing the dynamics of this membrane is
constructed using {\it any} local geometrical worldsheet scalars. As examples,
we consider a Nambu membrane, and an action quadratic in the extrinsic
curvature of the worldsheet.Comment: 20 pages, Plain Tex, sign errors corrected, many new references
added. To appear in Physical Review
Generating --cosmologies with perfect fluid in dilaton gravity
We present a method for generating exact diagonal -cosmological
solutions in dilaton gravity coupled to a radiation perfect fluid and with a
cosmological potential of a special type. The method is based on the symmetry
group of the system of -field equations. Several new classes of explicit
exact inhomogeneous perfect fluid scalar-tensor cosmologies are presented.Comment: 10 pages, LaTe
A Wormhole at the core of an infinite cosmic string
We study a solution of Einstein's equations that describes a straight cosmic
string with a variable angular deficit, starting with a deficit at the
core. We show that the coordinate singularity associated to this defect can be
interpreted as a traversible wormhole lodging at the the core of the string. A
negative energy density gradually decreases the angular deficit as the distance
from the core increases, ending, at radial infinity, in a Minkowski spacetime.
The negative energy density can be confined to a small transversal section of
the string by gluing to it an exterior Gott's like solution, that freezes the
angular deficit existing at the matching border. The equation of state of the
string is such that any massive particle may stay at rest anywhere in this
spacetime. In this sense this is 2+1 spacetime solution.Comment: 1 tex file and 5 eps files. To be Published in Nov. in Phys.Rev.
Reconstruction of a scalar-tensor theory of gravity in an accelerating universe
The present acceleration of the Universe strongly indicated by recent
observational data can be modeled in the scope of a scalar-tensor theory of
gravity. We show that it is possible to determine the structure of this theory
(the scalar field potential and the functional form of the scalar-gravity
coupling) along with the present density of dustlike matter from the following
two observable cosmological functions: the luminosity distance and the linear
density perturbation in the dustlike matter component as functions of redshift.
Explicit results are presented in the first order in the small inverse
Brans-Dicke parameter 1/omega.Comment: 4 pages, LaTeX 2.09, REVTeX 3.0, two-column forma
Dynamics of a string coupled to gravitational waves II - Perturbations propagate along an infinite Nambu-Goto string
The perturbative modes propagating along an infinite string are investigated
within the framework of the gauge invariant perturbation formalism on a
spacetime containing a self-gravitating straight string with a finite
thickness. These modes are not included in our previous analysis. We
reconstruct the perturbation formalism to discuss these modes and solve the
linearized Einstein equation within the first order with respect to the string
oscillation amplitude. In the thin string case, we show that the oscillations
of an infinite string must involve the propagation of cosmic string traveling
wave.Comment: 4 pages (2 columns), no figure, revtex with multicol.sty. To appear
in Physical Review
Atomic collision dynamics in optical lattices
We simulate collisions between two atoms, which move in an optical lattice
under the dipole-dipole interaction. The model describes simultaneously the two
basic dynamical processes, namely the Sisyphus cooling of single atoms, and the
light-induced inelastic collisions between them. We consider the J=1/2 -> J=3/2
laser cooling transition for Cs, Rb and Na. We find that the hotter atoms in a
thermal sample are selectively lost or heated by the collisions, which modifies
the steady state distribution of atomic velocities, reminiscent of the
evaporative cooling process.Comment: 17 pages, 15 figure
- …