5 research outputs found

    Analysis of Binary Fluid Heat and Mass Transfer in Ammonia-Water Absorption

    Get PDF
    An investigation of binary fluid heat and mass transfer in ammonia-water absorption was conducted. Experiments were conducted on a horizontal-tube falling-film absorber consisting of four columns of six 9.5 mm (3/8 in) nominal OD, 0.292 m (11.5 in) long tubes, installed in an absorption heat pump. Measurements were recorded at both system and local levels within the absorber for a wide range of operating conditions (nominally, desorber solution outlet concentrations of 5 - 40% for three nominal absorber pressures of 150, 345 and 500 kPa, for solution flow rates of 0.019 - 0.034 kg/s.). Local measurements were supplemented by high-speed, high-resolution visualization of the flow over the tube banks. Using the measurements and observations from videos, heat and mass transfer rates, heat and vapor mass transfer coefficients for each test condition were determined at the component and local levels. For the range of experiments conducted, the overall film heat transfer coefficient varied from 923 to 2857 W/m2-K while the vapor and liquid mass transfer coefficients varied from 0.0026 to 0.25 m/s and from 5.51Ă—10-6 to 3.31Ă—10-5 m/s, respectively. Local measurements and insights from the video frames were used to obtain the contributions of falling-film and droplet modes to the total absorption rates. The local heat transfer coefficients varied from 78 to 6116 W/m2-K, while the local vapor and liquid mass transfer coefficients varied from -0.04 to 2.8 m/s and from -3.59Ă—10-5 (indicating local desorption in some cases) to 8.96Ă—10-5 m/s, respectively. The heat transfer coefficient was found to increase with solution Reynolds number, while the mass transfer coefficient was found to be primarily determined by the vapor and solution properties. Based on the observed trends, correlations were developed to predict heat and mass transfer coefficients valid for the range of experimental conditions tested. These correlations can be used to design horizontal tube falling-film absorbers for ammonia-water absorption systems.Ph.D.Committee Chair: Garimella, Srinivas; Committee Member: Bergin, Michael; Committee Member: Frederick, James; Committee Member: Graham, Samuel; Committee Member: Wepfer, Willia

    Flow and Pressure Drop of Highly Viscous Fluids in Small Aperture Orifices

    Get PDF
    A study of the pressure drop characteristics of the flow of highly viscous fluids through small diameter orifices was conducted to obtain a better understanding of hydraulic fluid flow loops in vehicles. Pressure drops were measured for each of nine orifices, including orifices of nominal diameter 0.5, 1 and 3 mm, and three thicknesses (nominally 1, 2 and 3 mm), and over a wide range of flow rates (2.86x10sup-7/sup Q 3.33x10sup-4/sup msup3/sup/s). The fluid under consideration exhibits steep dependence of the properties (changes of several orders of magnitude) as a function of temperature and pressure, and is also non-Newtonian at the lower temperatures. The data were non-dimensionalized to obtain Euler numbers and Reynolds numbers using non-Newtonian treatment. It was found that at small values of Reynolds numbers, an increase in aspect ratio (length/diameter ratio of the orifice) causes an increase in Euler number. It was also found that at extremely low Reynolds numbers, the Euler number was very strongly influenced by the Reynolds number, while the dependence becomes weaker as the Reynolds number increases toward the turbulent regime, and the Euler number tends to assume a constant value determined by the aspect ratio and the diameter ratio. A two-region (based on Reynolds number) model was developed to predict Euler number as a function of diameter ratio, aspect ratio, viscosity ratio and generalized Reynolds number. This model also includes data at higher temperatures (20 and le; T and le; 50supo/supC) obtained by Mincks (2002). It was shown that for such highly viscous fluids with non-Newtonian behavior at some conditions, accounting for the shear rate through the generalized Reynolds number resulted in a considerable improvement in the predictive capabilities of the model. Over the laminar, transition and turbulent regions, the model predicts 86% of the data within and plusmn25% for 0.32 l/d (orifice thickness/diameter ratio) 5.72, 0.023 and beta; (orifice/pipe diameter ratio) 0.137, 0.09 Resubge/sub 9677, and 0.0194 and mu;subge/sub 9.589 (kg/m-s)M.S.Committee Chair: Dr. Srinivas Garimella; Committee Member: Dr. G. Paul Neitzel; Committee Member: Dr. S. Mostafa Ghiaasiaa
    corecore