4 research outputs found
Human embryonic and fetal biobanking:Establishing the Dutch Fetal Biobank and a framework for standardization
Recent studies of human embryos and fetuses have advanced our understanding not only of basic biology but also of health and disease, through a combination of detailed three-dimensional (3D) morphology and processes such as gene expression, cellular decision-making and differentiation, and epigenetics during the various phases of human development and growth. Large-scale research initiatives focusing on these topics have been initiated during the last decade, all of which depend on biobanks that provide high-quality images of human embryonic and fetal morphology, as well as on high-quality collections of tissue samples that are obtained and stored appropriately. In this perspective, we describe our experience in establishing the Dutch Fetal Biobank to present the framework and workflow of the biobank, provide a brief discussion of the main legal and ethical aspects involved in establishing a pre-natal tissue bank, and present the preliminary data on the first 329 donated specimens.</p
Human embryonic and fetal biobanking:Establishing the Dutch Fetal Biobank and a framework for standardization
Recent studies of human embryos and fetuses have advanced our understanding not only of basic biology but also of health and disease, through a combination of detailed three-dimensional (3D) morphology and processes such as gene expression, cellular decision-making and differentiation, and epigenetics during the various phases of human development and growth. Large-scale research initiatives focusing on these topics have been initiated during the last decade, all of which depend on biobanks that provide high-quality images of human embryonic and fetal morphology, as well as on high-quality collections of tissue samples that are obtained and stored appropriately. In this perspective, we describe our experience in establishing the Dutch Fetal Biobank to present the framework and workflow of the biobank, provide a brief discussion of the main legal and ethical aspects involved in establishing a pre-natal tissue bank, and present the preliminary data on the first 329 donated specimens.</p
Setting Up an Ultra-Fast Next-Generation Sequencing Approach as Reflex Testing at Diagnosis of Non-Squamous Non-Small Cell Lung Cancer; Experience of a Single Center (LPCE, Nice, France)
The number of genomic alterations required for targeted therapy of non-squamous non-small cell lung cancer (NS-NSCLC) patients has increased and become more complex these last few years. These molecular abnormalities lead to treatment that provides improvement in overall survival for certain patients. However, these treated tumors inexorably develop mechanisms of resistance, some of which can be targeted with new therapies. The characterization of the genomic alterations needs to be performed in a short turnaround time (TAT), as indicated by the international guidelines. The origin of the tissue biopsies used for the analyses is diverse, but their size is progressively decreasing due to the development of less invasive methods. In this respect, the pathologists are facing a number of different challenges requiring them to set up efficient molecular technologies while maintaining a strategy that allows rapid diagnosis. We report here our experience concerning the development of an optimal workflow for genomic alteration assessment as reflex testing in routine clinical practice at diagnosis for NS-NSCLC patients by using an ultra-fast-next generation sequencing approach (Ion Torrent Genexus Sequencer, Thermo Fisher Scientific). We show that the molecular targets currently available to personalized medicine in thoracic oncology can be identified using this system in an appropriate TAT, notably when only a small amount of nucleic acids is available. We discuss the new challenges and the perspectives of using such an ultra-fast NGS in daily practice