144 research outputs found

    Flexible Hotel Design: Rethinking Hotel Design to Address Short-Term Demand Fluctuations

    No full text
    A hotel consists of two major components, the business operations and the physical property. These two components although distinctively different, are very much interdependent and affect the hotel’s ability to succeed. An understanding of this important duality is evident in the increasingly market driven nature of hotel design. More diverse and innovative new hotel concepts are constantly being developed based on the identification of gaps in hotel markets, or the creation of new market segments. However, the common perception of the hotel property as being a static and permanent entity remains the same. Despite the volatile and ever‐changing nature of hotel markets, shortterm demand fluctuations have always been one of the biggest concerns and topics of discussion for hotel management and marketing. While there has been plenty of research into the problems and implications that short‐term demand fluctuations have on hotel performance and profitability, common approaches to dealing with demand changes are very much restricted by the physical hotel design, and limited to strategic management and marketing tactics that are often inadequate to deal with the problem. This thesis identifies a gap in the knowledge between hotel design and short‐term demand fluctuations. Through research and design, it aims to bridge the gap by directing a design response targeted specifically at the nature of shortterm demand fluctuations. The outcome of this thesis is the design of a new hotel proposed for Wellington, New Zealand. The design demonstrates how particular flexible design interventions can allow the hotel property to be more responsive to short‐term demand fluctuations, and its potential to improve business performance and operating efficiency

    Characterization of Embyronic Stem Cell-Differentiated Fibroblasts as Mesenchymal Stem Cells With Robust Expansion Capacity and Attenuated Innate Immunity

    Get PDF
    Background: Mesenchymal stem cells (MSCs) isolated from adult tissues (Ad-MSCs) have shown great promise for use in regenerative medicine. However, their poor in vitro expansion capacity and tissue scarcity have been major limitations. In this study, we demonstrate that mouse embryonic stem cells (mESCs) can differentiate into cells with MSC properties. Methods: Using previously established methods that characterize Ad-MSCs, we analyzed mESC-differentiated fibroblasts (mESC-FBs), including plastic adherence, clonogenic growth, MSC marker expression, tri-lineage differentiation potential, and the capacity to express immunomodulators. Results: Although previously characterized as mESC-differentiated fibroblasts (mESC-FBs), these cells exhibit major properties of Ad-MSCs. However, mESC-FBs also display unique features inherited from ESCs, including robust expansion capacity, senescence resistance, and attenuated innate immunity. In particular, mESC-FBs are insensitive to bacterial endotoxin (lipopolysaccharide, LPS) and do not express LPS-induced inflammatory molecules, in contrast to bone marrow (BM)-MSCs. We further demonstrate that mESC-FBs are resistant to the cytotoxicity associated with inflammatory cytokines, bacterial endotoxins (LPS and heat-killed bacteria), and macrophage-mediated inflammation. Conclusions: While it remains to be determined how the unique properties of mESC-FBs will affect their immunoregulatory activity under an in vivo condition, our findings demonstrate that ESCs could be used as an alternative source to generate a new class of ESC-MSCs with unique features potentially useful in regenerative medicine

    Exploring the Reasoning Abilities of Multimodal Large Language Models (MLLMs): A Comprehensive Survey on Emerging Trends in Multimodal Reasoning

    Full text link
    Strong Artificial Intelligence (Strong AI) or Artificial General Intelligence (AGI) with abstract reasoning ability is the goal of next-generation AI. Recent advancements in Large Language Models (LLMs), along with the emerging field of Multimodal Large Language Models (MLLMs), have demonstrated impressive capabilities across a wide range of multimodal tasks and applications. Particularly, various MLLMs, each with distinct model architectures, training data, and training stages, have been evaluated across a broad range of MLLM benchmarks. These studies have, to varying degrees, revealed different aspects of the current capabilities of MLLMs. However, the reasoning abilities of MLLMs have not been systematically investigated. In this survey, we comprehensively review the existing evaluation protocols of multimodal reasoning, categorize and illustrate the frontiers of MLLMs, introduce recent trends in applications of MLLMs on reasoning-intensive tasks, and finally discuss current practices and future directions. We believe our survey establishes a solid base and sheds light on this important topic, multimodal reasoning

    RECTANGLE: A Bit-slice Lightweight Block Cipher Suitable for Multiple Platforms

    Get PDF
    In this paper, we propose a new lightweight block cipher named RECTANGLE. The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice techniques. RECTANGLE uses an SP-network. The substitution layer consists of 16 4 x 4 S-boxes in parallel. The permutation layer is composed of 3 rotations. As shown in this paper, RECTANGLE offers great performance in both hardware and software environment, which provides enough flexibility for different application scenario. The following are 3 main advantages of RECTANGLE. First, RECTANGLE is extremely hardware-friendly. For the 80-bit key version, a one-cycle-per-round parallel implementation only needs 1600 gates for a throughput of 246 Kbits/sec at 100 KHz clock and an energy efficiency of 3.0 pJ/bit. Second, RECTANGLE achieves a very competitive software speed among the existing lightweight block ciphers due to its bit-slice style. Using 128-bit SSE instructions, a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9 cycles/byte for messages around 3000 bytes. Last, but not least, we propose new design criteria for the RECTANGLE S-box. Due to our careful selection of the S-box and the asymmetric design of the permutation layer, RECTANGLE achieves a very good security-performance tradeoff. Our extensive and deep security analysis shows that the highest number of rounds that we can attack, is 18 (out of 25)

    TensorIR: An Abstraction for Automatic Tensorized Program Optimization

    Full text link
    Deploying deep learning models on various devices has become an important topic. The wave of hardware specialization brings a diverse set of acceleration primitives for multi-dimensional tensor computations. These new acceleration primitives, along with the emerging machine learning models, bring tremendous engineering challenges. In this paper, we present TensorIR, a compiler abstraction for optimizing programs with these tensor computation primitives. TensorIR generalizes the loop nest representation used in existing machine learning compilers to bring tensor computation as the first-class citizen. Finally, we build an end-to-end framework on top of our abstraction to automatically optimize deep learning models for given tensor computation primitives. Experimental results show that TensorIR compilation automatically uses the tensor computation primitives for given hardware backends and delivers performance that is competitive to state-of-art hand-optimized systems across platforms.Comment: Accepted to ASPLOS 202

    Mechanical properties and air permeability of concrete containing waste tires extracts

    Get PDF
    The safe disposal of waste tires has been seen as having a negative impact on the environment. To mitigate this impact, the components of waste tires can be used in the production of green concrete. This study explores the effects of the curing and drying regime on the mechanical properties and permeation characteristics of concrete containing both crumbed rubber and steel fibers that are removed from waste tires. Five concrete mixes were designed, and concrete cubes, cylinders, and prisms were cast using waste tires extracts. Crumb rubber was treated by submersion in sodium hydroxide and then used to partially replace 10% and 30% of fine aggregates in the concrete mix. Extracted steel fibers were added at the rate of 1% and 2% per volume of each mix. Compressive and indirect splitting tensile as well as flexural strengths were conducted after normal curing while observing several drying conditions. Additionally, air permeability was assessed using a portable apparatus that was developed to assess permeability easily. For the concrete test specimens containing 10% partial replacement of fine aggregate by crumb rubber and 1% steel fibers, it was discovered that the splitting tensile strength and flexural strength were higher than that of the control mix by 21% and 22.6%, respectively. For specimens that included the 10% crumb rubber and 1% steel fibers, when exposed to oven drying at 105°C for 12 h, the compressive strength results increased by 17% compared with the control specimens exposed to the same conditions. Unlike the compressive strength results, the splitting tensile and flexural strength results decreased after exposing the specimens to elevated temperature. The addition of crumb rubber and steel fibers as a partial fine-aggregate replacement resulted in increasing the air permeability of the concrete to different degrees depending on the percentages used. The oven-drying curing regime improved the permeability by reducing it in specimens containing the 10% crumb rubber and 1% steel fibers as indicated by increasing their permeability time index by 15% when compared with air-dried specimens. Using waste tire extracts as a partial replacement of concrete fine aggregate can be recommended for both indoor and outdoor applications. This study showed that this was a viable, economic, and environmentally friendly method for reducing carbon footprint

    PERMEATION CHARACTERISTICS AND DURABILITY ASPECTS FOR SUSTAINABLE CONCRETE

    Get PDF
    This study investigates the durability indicators for sustainable concrete produced by adding both crumbed rubber and steel fibres that are removed from waste tyres to the concrete mixes. Crumb rubber was treated by submersion in sodium hydroxide and then used to partially replace 10% and 30% of fine aggregates in the concrete mix. Extracted steel fibres were added at the rate of 1% and 2% per volume of each mix. The compressive strength was recorded, and a non-destructive air permeability test was used to assess permeation characteristics of studied specimens and to correlate the results with compressive strength results. It was found that with the increase in the steel fibres percentage while keeping the rubber content constant resulted in increased compressive strength of concrete. Rubberized concrete of 10% crumb rubber and 1% steel fibres exposed to oven drying at 105°C for 12 hours exhibited an increase in compressive strength. The addition of crumb rubber and steel fibres as a partial fine aggregate replacement resulted in increasing the air permeability of the concrete to different degrees depending on the percentages used. This study showed that waste tyres extracts can be a viable, economic, and environmentally friendly method for obtaining durable and sustainable concrete

    Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury

    Get PDF
    Background/Aims: Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-α and NFκB. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI. Methods: The effects of MSC and MSC-exo on SCIinduced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats. Results: MSC or MSC-exo co-culture reduced the proportion of SCIinduced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNFα, Interleukin (IL)-1α and IL-1β, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NFκB p65. Conclusion: MSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NFκB p65, and exert antiinflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSCexo comparable with that of MSCs when applied intravenously
    corecore