7 research outputs found

    ALICE A Large Ion Collider Experiment

    No full text
    POLAR-2 is a follow-up GRB mission of POLAR, which has observed low levels of polarization degree and a temporal evolution of the polarization angle, indicating that time resolved studies of γ\gamma photons polarization are required to constrain theoretical emission models of GRB’s. POLAR-2 detector aim to put in space a detector with one order of magnitude sensitivity improvement versus POLAR. POLAR-2 will be the most sensitive GRB detector covering half of the sky. The instrument, proposed by an international collaboration, was selected to be launched in 2024 to the China Space Station and operate for at least 2 years. POLAR-2 will use same plastic bar concept then POLAR but will be readout by SiPMT. The payload will also feature a spectrometer. The instrument is foreseen to perform detailed polarization measurements of at least 100 GRBs

    Prenatal Development of Domestic and Laboratory Mammals: Growth Curves, External Features and Selected References

    No full text

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive Υ(1S) and Υ(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the Υ(1S) and Υ(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of Υ(1S). A suppression of the inclusive Υ(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects

    Beauty production in pp collisions at √s = 2.76 TeV measured via semi-electronic decays

    No full text
    The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s√= 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, σb→e=3.47±0.40(stat)+1.12−1.33(sys)±0.07(norm)μb, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total bb¯ production cross section, σbb¯=130±15.1(stat)+42.1−49.8(sys)+3.4−3.1(extr)±2.5(norm)±4.4(BR)μb

    Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at √s = 2.76 TeV

    No full text
    The pT-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at s√=2.76 TeV in the transverse momentum range 0.5 < pT < 12 GeV/c with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties

    J/ψJ/\psi production and nuclear effects in p-Pb collisions at SNN\sqrt{S_{NN}} = 5.02 TeV

    No full text
    Inclusive J/ψ\psi production has been studied with the ALICE detector in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV at the CERN LHC, in the rapidity domains 2.03 < ycms_{cms} < 3.53 and −4.46 < ycms_{cms} < −2.96, down to zero transverse momentum. The J/ψ\psi measurement is performed in the Muon Spectrometer through the μ+μ\mu^+\mu^− decay mode. In this Letter, the J/ψ\psi production cross section and the nuclear modification factor RpPb_{pPb} for the rapidities under study are presented. While at forward rapidity a suppression of the J/ψ\psi yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also shown differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results.Inclusive J/ψ\psi production has been studied with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy sNN\sqrt{s_{\rm NN}} = 5.02 TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains 2.03<ycms<3.532.03<y_{\rm cms}<3.53 and 4.46<ycms<2.96-4.46<y_{\rm cms}<-2.96, down to zero transverse momentum, studying the μ+μ\mu^+\mu^- decay mode. In this paper, the J/ψ\psi production cross section and the nuclear modification factor RpPbR_{\rm pPb} for the rapidities under study are presented. While at forward rapidity, corresponding to the proton direction, a suppression of the J/ψ\psi yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results
    corecore