29 research outputs found

    Evaluation of Shortleaf Pine Germination and Early Survival under Various Seedbed Conditions�

    Get PDF
    Germination and early survival of shortleaf pine (Pinus echinata Mill.) seed can be enhanced with proper seedbed preparation. Seedbeds, resulting from various burning intensities following fell-burn site preparation on a Ouachita Mountain site in southeastern Oklahoma, were evaluated following a winter sowing of non-stratified seed, and spring sowing of stratified. seed. The winter sowing resulted in higher fie~d germi:rl:ation (3.3 vs. 2.0%) than the spring sowing. Seeds sowed on areas receiving a more intensive burn germinated approximately four times betterthan those on low or no burn areas. Stocking ranged from 60% on winter sown, hot burned plots to 3% on spring sown, no burn plots. Because the areas where pine slash was concentrated seemed to burn with the greatest intensities, a system which requires slash�to be evenly scattered over the site instead of stacking or windrowing would be beneficial.Forest Resource

    Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease, considered to be autoimmune in origin. Post-translational modification of central nervous system proteins, including glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP), through citrullination of arginine residues, may lead to exposure of neoepitopes, triggering autoimmunity. Here we investigated the expression of citrullinated proteins in active MS lesions, MS normal appearing white matter and control brain white matter. We demonstrate increased citrullinated GFAP and MBP by immunohistochemistry and western blotting in areas of ongoing demyelination, suggesting a pivotal role for deimination of GFAP and MBP in MS pathogenesis MS

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Percutaneous Peripheral Nerve Stimulation (Neuromodulation) for Postoperative Pain: A Randomized, Sham-controlled Pilot Study

    No full text
    BackgroundPercutaneous peripheral nerve stimulation is an analgesic technique involving the percutaneous implantation of a lead followed by the delivery of electric current using an external pulse generator. Percutaneous peripheral nerve stimulation has been used extensively for chronic pain, but only uncontrolled series have been published for acute postoperative pain. The current multicenter study was undertaken to (1) determine the feasibility and optimize the protocol for a subsequent clinical trial and (2) estimate the treatment effect of percutaneous peripheral nerve stimulation on postoperative pain and opioid consumption.MethodsPreoperatively, an electrical lead was percutaneously implanted to target the sciatic nerve for major foot/ankle surgery (e.g., hallux valgus correction), the femoral nerve for anterior cruciate ligament reconstruction, or the brachial plexus for rotator cuff repair, followed by a single injection of long-acting local anesthetic along the same nerve/plexus. Postoperatively, participants were randomized to 14 days of either electrical stimulation (n = 32) or sham stimulation (n = 34) using an external pulse generator in a double-masked fashion. The dual primary treatment effect outcome measures were (1) cumulative opioid consumption (in oral morphine equivalents) and (2) mean values of the "average" daily pain scores measured on the 0 to 10 Numeric Rating Scale within the first 7 postoperative days.ResultsDuring the first 7 postoperative days, opioid consumption in participants given active stimulation was a median (interquartile range) of 5 mg (0 to 30) versus 48 mg (25 to 90) in patients given sham treatment (ratio of geometric means, 0.20 [97.5% CI, 0.07 to 0.57]; P < 0.001). During this same period, the average pain intensity in patients given active stimulation was a mean ± SD of 1.1 ± 1.1 versus 3.1 ± 1.7 in those given sham (difference, -1.8 [97.5% CI, -2.6 to -0.9]; P < 0.001).ConclusionsPercutaneous peripheral nerve stimulation reduced pain scores and opioid requirements free of systemic side effects during at least the initial week after ambulatory orthopedic surgery.Editor’s perspectiv

    Capital social e a privatização do conhecimento

    No full text
    corecore