1,493 research outputs found
Elastic Convection in Vibrated Viscoplastic Fluids
We observe a new type of behavior in a shear thinning yield stress fluid:
freestanding convection rolls driven by vertical oscillation. The convection
occurs without the constraint of container boundaries yet the diameter of the
rolls is spontaneously selected for a wide range of parameters. The transition
to the convecting state occurs without hysteresis when the amplitude of the
plate acceleration exceeds a critical value. We find that a non-dimensional
stress, the stress due to the inertia of the fluid normalized by the yield
stress, governs the onset of the convective motion.Comment: 4 pages, 6 figure
Chaotic flow and efficient mixing in a micro-channel with a polymer solution
Microscopic flows are almost universally linear, laminar and stationary
because Reynolds number, , is usually very small. That impedes mixing in
micro-fluidic devices, which sometimes limits their performance. Here we show
that truly chaotic flow can be generated in a smooth micro-channel of a uniform
width at arbitrarily low , if a small amount of flexible polymers is added
to the working liquid. The chaotic flow regime is characterized by randomly
fluctuating three-dimensional velocity field and significant growth of the flow
resistance. Although the size of the polymer molecules extended in the flow may
become comparable with the micro-channel width, the flow behavior is fully
compatible with that in a table-top channel in the regime of elastic
turbulence. The chaotic flow leads to quite efficient mixing, which is almost
diffusion independent. For macromolecules, mixing time in this microscopic flow
can be three to four orders of magnitude shorter than due to molecular
diffusion.Comment: 8 pages,7 figure
Multiscale Simulation of History Dependent Flow in Polymer Melt
We have developed a new multiscale simulation technique to investigate
history-dependent flow behavior of entangled polymer melt, using a smoothed
particle hydrodynamics simulation with microscopic simulators that account for
the dynamics of entangled polymers acting on each fluid element. The multiscale
simulation technique is applied to entangled polymer melt flow around a
circular obstacle in a two-dimensional periodic system. It is found that the
strain-rate history-dependent stress of the entangled polymer melt affects its
flow behavior, and the memory in the stress causes nonlinear behavior even in
the regions where . The spatial distribution of the
entanglements is also investigated. The slightly low entanglement region
is observed around the obstacle and is found to be broaden in the downstream
region.Comment: 4 pages, 3 figure
Penalty finite element approximations of the stationary power- law Stokes problem
Finite element approximations of the stationary power-law Stokes problem using penalty
formulation are considered. A priori error estimates under appropriate smoothness assumptions on the
solutions are established without assuming a discrete version of the BB condition. Numerical solutions
are presented by implementing a nonlinear conjugate gradient metho
Piecing the Solar Neutrino Puzzle Together at SNO
We perform an oscillation parameter-independent analysis of solar neutrino
flux measurements from which we predict the charged-current rate at SNO
relative to Standard Solar Model to be for oscillations to active (sterile) neutrinos. By
alternately considering the B flux normalization fixed and free, we find
that the flux measured by Super-Kamiokande (SK) not being a result of
oscillations is strongly disfavored for oscillations to active neutrinos. SNO
will determine the best-fit value of the B flux normalization
(equal to the neutral-current rate), without recourse to neutral-current
measurements, from the derived relation . Using a simple parameterization of the fraction of high,
intermediate, and low energy solar neutrinos starting above resonance, we
reproduce the results of global analyses to good accuracy; we find that the LMA
solution with a normal mass hierarchy is clearly favored. With free,
our analysis for oscillations to active neutrinos gives
, which corresponds to .Comment: Version to appear in PL
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Gamow-Teller Strengths of the Inverse-Beta Transition 176Yb --> 176Lu for Spectroscopy of Proton-Proton and other sub-MeV Solar Neutrinos
Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation
energies have been measured via the (3He,t) reaction at 450 MeV and at 0
degrees. For 176Yb, two low-lying states are observed, setting low thresholds
Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from
the measured GT strengths, the simple two-state excitation structure, and the
low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well
suited for a direct measurement of the complete sub-MeV solar electron-neutrino
spectrum (including pp neutrinos) where definitive effects of flavor conversion
are expected
Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids
A base-mediated 6-endo-trig cyclization of
readily accessible enone-derived α-amino acids has been
developed for the direct synthesis of novel 2,6-cis-6-
substituted-4-oxo-L-pipecolic acids. A range of aliphatic and
aryl side chains were tolerated by this mild procedure to give
the target compounds in good overall yields. Molecular
modeling of the 6-endo-trig cyclization allowed some insight as
to how these compounds were formed, with the enolate
intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed
A liquid xenon ionization chamber in an all-fluoropolymer vessel
A novel technique has been developed to build vessels for liquid xenon
ionization detectors entirely out of ultra-clean fluoropolymer. We describe the
advantages in terms of low radioactivity contamination, provide some details of
the construction techniques, and show the energy resolution achieved with a
prototype all-fluoropolymer ionization detector.Comment: 12 pages, 9 figure
- …