913 research outputs found
Chronic Administration of a Leupeptin-Derived Calpain Inhibitor Fails to Ameliorate Severe Muscle Pathology in a Canine Model of Duchenne Muscular Dystrophy
Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD). Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the present study, we sought to measure benefit from administration of a novel calpain inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothesis that treatment with C101 mitigates progressive weakness and severe muscle pathology observed in young dogs with golden retriever muscular dystrophy (GRMD). Young (6-week-old) GRMD dogs were treated daily with either C101 (17 mg/kg twice daily oral dose, n = 9) or placebo (vehicle only, n = 7) for 8 weeks. A battery of functional tests, including tibiotarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed at baseline and every 2 weeks during the 8-week study. Results indicate that C101-treated GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors) while placebo-treated dogs progressively lost strength. However, concomitant improvement was not observed in posterior pelvic limb muscles (tibiotarsal extensors). C101 treatment did not mitigate force drop following repeated eccentric contractions and no improvement was seen in the development of joint contractures, lean muscle mass, or muscle histopathology. Taken together, these data do not support the hypothesis that treatment with C101 mitigates progressive weakness or ameliorates severe muscle pathology observed in young dogs with GRMD
Investigating a Possible Treatment of Duchene Muscular Dystrophy with a Novel Calpain Inhibitor [abstract]
Abstract only availableFaculty Mentor: Dr. Martin K. Childers, Physical Medicine & RehabilitationDuchene Muscular Dystrophy (DMD) is the most common lethal X-linked recessive muscle disease, affecting nearly one out of every 3,500 newborn males. Symptoms appear before age three and by eleven, most children are unable to walk. Few live past the age of 25.The genetic disorder is caused by a mutation in the dystrophin gene, eradicating the body's ability to produce the cytoskeletal protein, dystrophin. In normal muscle cells, dystrophin is part of a molecular complex that adds mechanical integrity to the sarcolemma by linking the cytoskeleton to the extracellular matrix. When the complex is disrupted, as in the case of DMD, the membrane is easily torn during regular muscle use. Damage to the membrane causes aberrant influxes of Ca++, initiating a cascade of devastating molecular events in the sarcomere. Elevated Ca++ over activates a family of proteases known as calpains. Calpains cleave proteins at specific sites. Over-active calpains are thought to contribute to pathology in DMD. Compounds that hinder calpain activity present a possible treatment for the disease. A novel protease inhibitor has shown promising results in preliminary investigations in mice and this study was proposed to further explore the compound's effect on gene expression in canine muscle. An Affymetrix canine microarray was used to compare mRNA expression between normal dogs, dogs with golden retriever muscular dystrophy (GRMD), and inhibitor-treated GRMD dogs. By comparing these expression levels, we are able to speculate whether calpain inhibitor treatment is able to mitigate aberrant gene expression in GRMD dogs. Analysis of raw data is ongoing. Further study is required to determine if mRNA levels equate with the protein expression levels using PCR, Western Blotting, or other methods
Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns
We reconstructed the 3D Fourier intensity distribution of mono-disperse
prolate nano-particles using single-shot 2D coherent diffraction patterns
collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray
pulse intercepted individual particles of random, unmeasured orientations. This
first experimental demonstration of cryptotomography extended the
Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured
fluctuations in photon fluence and loss of data due to saturation or background
scatter. This work is an important step towards realizing single-shot
diffraction imaging of single biomolecules.Comment: 4 pages, 4 figure
Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment
This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L−1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy
Respiratory dysfunction in unsedated dogs with golden retriever muscular dystrophy
Golden retriever muscular dystrophy (GRMD) is a well-established model of Duchenne muscular dystrophy. The value of this model would be greatly enhanced with practical tools to monitor progression of respiratory dysfunction during treatment trials. Arterial blood gas analysis, tidal breathing spirometry, and respiratory inductance plethysmography (RIP) were performed to determine if quantifiable abnormalities could be identified in unsedated, untrained, GRMD dogs. Results from 11 dogs with a mild phenotype of GRMD and 11 age-matched carriers were compared. Arterial blood gas analysis was successfully performed in all dogs, spirometry in 21 of 22 (95%) dogs, and RIP in 18 of 20 (90%) dogs. Partial pressure of carbon dioxide and bicarbonate concentration were higher in GRMD dogs. Tidal breathing peak expiratory flows were markedly higher in GRMD dogs. Abnormal abdominal motion was present in 7 of 10 (70%) GRMD dogs. Each technique provided objective, quantifiable measures that will be useful for monitoring respiratory function in GRMD dogs during clinical trials while avoiding the influence of sedation on results. Increased expiratory flows and the pattern of abdominal breathing are novel findings, not reported in people with Duchenne muscular dystrophy, and might be a consequence of hyperinflation
HotPoint: hot spot prediction server for protein interfaces
The energy distribution along the protein–protein interface is not homogenous; certain residues contribute more to the binding free energy, called ‘hot spots’. Here, we present a web server, HotPoint, which predicts hot spots in protein interfaces using an empirical model. The empirical model incorporates a few simple rules consisting of occlusion from solvent and total knowledge-based pair potentials of residues. The prediction model is computationally efficient and achieves high accuracy of 70%. The input to the HotPoint server is a protein complex and two chain identifiers that form an interface. The server provides the hot spot prediction results, a table of residue properties and an interactive 3D visualization of the complex with hot spots highlighted. Results are also downloadable as text files. This web server can be used for analysis of any protein–protein interface which can be utilized by researchers working on binding sites characterization and rational design of small molecules for protein interactions. HotPoint is accessible at http://prism.ccbb.ku.edu.tr/hotpoint
GEO 600 and the GEO-HF upgrade program: successes and challenges
The German-British laser-interferometric gravitational wave detector GEO 600
is in its 14th year of operation since its first lock in 2001. After GEO 600
participated in science runs with other first-generation detectors, a program
known as GEO-HF began in 2009. The goal was to improve the detector sensitivity
at high frequencies, around 1 kHz and above, with technologically advanced yet
minimally invasive upgrades. Simultaneously, the detector would record science
quality data in between commissioning activities. As of early 2014, all of the
planned upgrades have been carried out and sensitivity improvements of up to a
factor of four at the high-frequency end of the observation band have been
achieved. Besides science data collection, an experimental program is ongoing
with the goal to further improve the sensitivity and evaluate future detector
technologies. We summarize the results of the GEO-HF program to date and
discuss its successes and challenges
The conservation status of the world’s freshwater molluscs
With the biodiversity crisis continuing unchecked, we need to establish levels and drivers of extinction risk, and reassessments over time, to effectively allocate conservation resources and track progress towards global conservation targets. Given that threat appears particularly high in freshwaters, we assessed the extinction risk of 1428 randomly selected freshwater molluscs using the IUCN Red List Categories and Criteria, as part of the Sampled Red List Index project. We show that close to one-third of species in our sample are estimated to be threatened with extinction, with highest levels of threat in the Nearctic, Palearctic and Australasia and among gastropods. Threat levels were higher in lotic than lentic systems. Pollution (chemical and physical) and the modification of natural systems (e.g. through damming and water abstraction) were the most frequently reported threats to freshwater molluscs, with some regional variation. Given that we found little spatial congruence between species richness patterns of freshwater molluscs and other freshwater taxa, apart from crayfish, new additional conservation priority areas emerged from our study. We discuss the implications of our findings for freshwater mollusc conservation, the adequacy of a sampled approach and important next steps to estimate trends in freshwater mollusc extinction risk over time
Microcondylaea bonellii as a new host for the European bitterling Rhodeus amarus
We report for the first time that the freshwater mussel Microcondylaea bonellii (Ferussac, 1827) functions as a suitable host for the European bitterling Rhodeus amarus (Bloch, 1782). Given the recent expansion of R. amarus in Europe, the possible physiological cost (e.g. competition for oxygen, reduction in water circulation, and consequent impairment of filter-feeding) of this interaction may further affect the already poor conservation status of M. bonellii populations.We acknowledge the two anonymous referees for the helpful suggestions that improve the clarity of our manuscript. This research was funded by FCT under project ConBiomics No NORTE-01-0145-FEDER-030286, cofinanced by COMPETE 2020, Portugal 2020 and the European Union through the ERDF
- …