390 research outputs found

    Ionization wave propagation on a micro cavity plasma array

    Full text link
    Microcavity plasma arrays of inverse pyramidal cavities have been fabricated in p-Si wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz, each cavity develops a localized microplasma. Experiments have shown a strong interaction of individual cavities, leading to the propagation of wave-like optical emission structures along the surface of the array. This phenomenon is numerically investigated using computer simulation. The observed ionization wave propagates with a speed of about 5 km/s, which agrees well the experimental findings. It is found that the wave propagation is due to sequential contributions of a drift of electrons followed by drift of ions between cavities seeded by photoemission of electrons by the plasma in adjacent cavities

    Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in Eastern Massachusetts, USA

    Get PDF
    Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island (NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in New England are currently unknown. Using dendroecological techniques, this study related annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by up to 67% in the same year as defoliation, while earlywood production was reduced by up to 24% in the year following defoliation. Winter moth defoliation was not a strong predictor of radial growth in Acer species. This study is the first to document impacts of novel invasions of winter moth into New England

    Lack of neurotrophin-4 causes selective structural and chemical deficits in sympathetic ganglia and their preganglionic innervation

    Get PDF
    Neurotrophin-4 (NT-4) is perhaps the still most enigmatic member of the neurotrophin family. We show here that NT-4 is expressed in neurons of paravertebral and prevertebral sympathetic ganglia, i.e., the superior cervical (SCG), stellate (SG), and celiac (CG) ganglion. Mice deficient for NT-4 showed a significant reduction (20-30%) of preganglionic sympathetic neurons in the intermediolateral column (IML) of the thoracic spinal cord. In contrast, neuron numbers in the SCG, SG, and CG were unchanged. Numbers of axons in the thoracic sympathetic trunk (TST) connecting the SG with lower paravertebral ganglia were also reduced, whereas axon numbers in the cervical sympathetic trunk (CST) were unaltered. Axon losses in the TST were paralleled by losses of synaptic terminals on SG neurons visualized by electron microscopy. Furthermore, immunoreactivity for the synaptic vesicle antigen SV2 was clearly reduced in the SG and CG. Levels of catecholamines and tyrosine hydroxylase immunoreactivity were dramatically reduced in the SG and the CG but not in the SCG. Despite this severe phenotype in the sympathetic system, blood pressure levels were not reduced and displayed a pattern more typical of deficits in baroreceptor afferents. Numbers of IML neurons were unaltered at postnatal day 4, suggesting a postnatal requirement for their maintenance. In light of these and previous data, we hypothesize that NT-4 provided by postganglionic sympathetic neurons is required for establishing and/or maintaining synapses of IML neurons on postganglionic cells. Impairment of synaptic connectivity may consequently reduce impulse flow, causing a reduction in transmitter synthesis in postganglionic neurons

    The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin

    Get PDF
    The AF-6 protein is a multidomain protein that contains two potential Ras-binding domains within its N terminus. Because of this feature, AF-6 has been isolated in both two-hybrid and biochemical approaches and is postulated to be a potential Ras-effector protein, Herein, we show that it is specifically the first Ras-binding domain of AF-6 that mediates this interaction and that the Ras-related Rap1A protein can associate with this motif even more efficiently than the oncogenic Ha-, K-, and N-Ras GTPases. We further demonstrate that both Ras and Rap1 interact with full-length AF-6 in vivo in mammalian cells and that a fraction of Rap1 colocalizes with AF-6 at the membrane. Dominant active Rap1A, in contrast to Ras, when introduced into epithelial MDCK and MCF-7 cells, does not perturb AF-6-specific residency in cell-cell adhesion complexes. In a pursuit to gain further understanding of the role of AF-6 in junctions, we identified profilin as an AF-6-binding protein. Profilin activates monomeric actin units for subsequent polymerization steps at barbed ends of actin filaments and has been shown to participate in cortical actin assembly. To our knowledge, AF-6 is the only integral component in cell-cell junctions discovered thus far that interacts with profilin and thus could modulate actin modeling proximal to adhesion complexes

    A new depositional model for the Tuaheni Landslide Complex, Hikurangi Margin, New Zealand

    Get PDF
    The Tuaheni Landslide Complex (TLC) is characterised by areas of compression upslope and extension downslope. It has been thought to consist of a stack of two genetically linked landslide units identified on seismic data. We use 3D seismic reflection, bathymetry data, and IODP core U1517C (Expedition 372), to understand the internal structures, deformation mechanisms and depositional processes of the TLC deposits. Unit II and Unit III of U1517C correspond to the two chaotic units in 3D seismic data. In the core, Unit II shows deformation whereas Unit III appears more like an in situ sequence. Variance attribute analysis shows that Unit II is split in lobes around a coherent stratified central ridge and is bounded by scarps. By contrast, we find that Unit III is continuous beneath the central ridge and has an upslope geometry that we interpret as a channellevee system. Both units show evidence of lateral spreading due to the presence of the Tuaheni Canyon removing support from the toe. Our results suggest that Unit II and Unit III are not genetically linked, that they are separated substantially in time and they had different emplacement mechanisms, but fail under similar circumstances

    The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction

    Get PDF
    Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin–afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster’s afadin homologue Canoe (Cno) has suggested roles in signal transduction during morphogenesis. We completely removed Cno from embryos, testing these hypotheses. Surprisingly, Cno is not essential for AJ assembly or for AJ maintenance in many tissues. However, morphogenesis is impaired from the start. Apical constriction of mesodermal cells initiates but is not completed. The actomyosin cytoskeleton disconnects from AJs, uncoupling actomyosin constriction and cell shape change. Cno has multiple direct interactions with AJ proteins, but is not a core part of the cadherin–catenin complex. Instead, Cno localizes to AJs by a Rap1- and actin-dependent mechanism. These data suggest that Cno regulates linkage between AJs and the actin cytoskeleton during morphogenesis

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    A Functional Genomic Screen Combined with Time-Lapse Microscopy Uncovers a Novel Set of Genes Involved in Dorsal Closure of Drosophila Embryos

    Get PDF
    Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes
    corecore