1,075 research outputs found
Slabs of stabilized jellium: Quantum-size and self-compression effects
We examine thin films of two simple metals (aluminum and lithium) in the
stabilized jellium model, a modification of the regular jellium model in which
a constant potential is added inside the metal to stabilize the system for a
given background density. We investigate quantum-size effects on the surface
energy and the work function. For a given film thickness we also evaluate the
density yielding energy stability, which is found to be slightly higher than
the equilibrium density of the bulk system and to approach this value in the
limit of thick slabs. A comparison of our self-consistent calculations with the
predictions of the liquid-drop model shows the validity of this model.Comment: 7 pages, 6 figures, to appear in Phys. Rev.
Lattice Dynamics and the High Pressure Equation of State of Au
Elastic constants and zone-boundary phonon frequencies of gold are calculated
by total energy electronic structure methods to twofold compression. A
generalized force constant model is used to interpolate throughout the
Brillouin zone and evaluate moments of the phonon distribution. The moments are
used to calculate the volume dependence of the Gruneisen parameter in the fcc
solid. Using these results with ultrasonic and shock data, we formulate the
complete free energy for solid Au. This free energy is given as a set of closed
form expressions, which are valid to compressions of at least V/V_0 = 0.65 and
temperatures up to melting. Beyond this density, the Hugoniot enters the
solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are
discussed within an approximate model. We compare with proposed standards for
the equation of state to pressures of ~200 GPa. Our result for the room
temperature isotherm is in very good agreement with an earlier standard of
Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.
Graphene for spintronics: giant Rashba splitting due to hybridization with Au
Graphene in spintronics has so far primarily meant spin current leads of high
performance because the intrinsic spin-orbit coupling of its pi-electrons is
very weak. If a large spin-orbit coupling could be created by a proximity
effect, the material could also form active elements of a spintronic device
such as the Das-Datta spin field-effect transistor, however, metal interfaces
often compromise the band dispersion of massless Dirac fermions. Our
measurements show that Au intercalation at the graphene-Ni interface creates a
giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the
Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d
states as the source for the giant spin-orbit splitting. An ab initio model of
the system shows a Rashba-split dispersion with the analytically predicted
gapless band topology around the Dirac point of graphene and indicates that a
sharp graphene-Au interface at equilibrium distance will account for only ~10
meV spin-orbit splitting. The ab initio calculations suggest an enhancement due
to Au atoms that get closer to the graphene and do not violate the sublattice
symmetry.Comment: 16 pages (3 figures) + supplementary information 16 pages (14
figures
Block-Diagonalization and f-electron Effects in Tight-Binding Theory
We extend a tight-binding total energy method to include f-electrons, and
apply it to the study of the structural and elastic properties of a range of
elements from Be to U. We find that the tight-binding parameters are as
accurate and transferable for f-electron systems as they are for d-electron
systems. In both cases we have found it essential to take great care in
constraining the fitting procedure by using a block-diagonalization procedure,
which we describe in detail.Comment: 9 pages, 6 figure
Energetics of metal slabs and clusters: the rectangle-box model
An expansion of energy characteristics of wide thin slab of thickness L in
power of 1/L is constructed using the free-electron approximation and the model
of a potential well of finite depth. Accuracy of results in each order of the
expansion is analyzed. Size dependences of the work function and electronic
elastic force for Au and Na slabs are calculated. It is concluded that the work
function of low-dimensional metal structure is always smaller that of
semi-infinite metal sample.
A mechanism for the Coulomb instability of charged metal clusters, different
from Rayleigh's one, is discussed. The two-component model of a metallic
cluster yields the different critical sizes depending on a kind of charging
particles (electrons or ions). For the cuboid clusters, the electronic spectrum
quantization is taken into account. The calculated critical sizes of
Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental
data. A qualitative explanation is suggested for the Coulomb explosion of
positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl
Origin of complex crystal structures of elements at pressure
We present a unifying theory for the observed complex structures of the
sp-bonded elements under pressure based on nearly free electron picture (NFE).
In the intermediate pressure regime the dominant contribution to crystal
structure arises from Fermi-surface Brillouin zone (FSBZ) interactions -
structures which allow this are favoured. This simple theory explains the
observed crystal structures, transport properties, the evolution of internal
and unit cell parameters with pressure. We illustrate it with experimental data
for these elements and ab initio calculation for Li.Comment: 4 pages 5 figure
Sequential decoupling of negative-energy states in Douglas-Kroll-Hess theory
Here, we review the historical development, current status, and prospects of
Douglas--Kroll--Hess theory as a quantum chemical relativistic electrons-only
theory.Comment: 15 page
Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu
We have theoretically studied the stability and reconstruction of (111)
surfaces of Au, Pt, and Cu. We have calculated the surface energy, surface
stress, interatomic force constants, and other relevant quantities by ab initio
electronic structure calculations using the density functional theory (DFT), in
a slab geometry with periodic boundary conditions. We have estimated the
stability towards a quasi-one-dimensional reconstruction by using the
calculated quantities as parameters in a one-dimensional Frenkel-Kontorova
model. On all surfaces we have found an intrinsic tensile stress. This stress
is large enough on Au and Pt surfaces to lead to a reconstruction in which a
denser surface layer is formed, in agreement with experiment. The
experimentally observed differences between the dense reconstruction pattern on
Au(111) and a sparse structure of stripes on Pt(111) are attributed to the
details of the interaction potential between the first layer of atoms and the
substrate.Comment: 8 pages, 3 figures, submitted to Physical Review
- …
