13 research outputs found
Long-term impact of pneumococcal polysaccharide vaccination on nasopharyngeal carriage in children previously vaccinated with various pneumococcal conjugate vaccine regimes
Previously, the Fiji Pneumococcal Project (FiPP) evaluated reduced dose immunization schedules that incorporated pneumococcal protein conjugate and/or polysaccharide vaccine (PCV7 and 23vPPV, respectively). Immune hyporesponsiveness was observed in children vaccinated with 23vPPV at 12 months of age compared with children who did not receive 23vPPV.Here we assess the long-term impact of 23vPPV vaccination on nasopharyngeal carriage rates and densities of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus and Moraxella catarrhalis. Nasopharyngeal swabs (n = 194) were obtained from healthy children who participated in FiPP (now aged 5–7 years). S. pneumoniae were isolated and identified by standard culture-based methods, and serotyped using latex agglutination and the Quellung reaction. Carriage rates and densities of S. pneumoniae, H. influenzae, S. aureus and M. catarrhalis were determined using real-time quantitative PCR.There were no differences in the rate or density of S. pneumoniae, H. influenzae or M. catarrhalis carriage by PCV7 dose or 23vPPV vaccination in the vaccinated participants overall. However, differences were observed between the two main ethnic groups: Fijian children of Indian descent (Indo-Fijian) were less likely to carry S. pneumoniae, H. influenzae and M. catarrhalis, and there was evidence of a higher carriage rate of S. aureus compared with indigenous Fijian (iTaukei) children. Polysaccharide vaccination appeared to have effects that varied between ethnic groups, with 23vPPV vaccination associated with a higher carriage rate of S. aureus in iTaukei children, while there was a lower carriage rate of S. pneumoniae associated with 23vPPV vaccination in Indo-Fijian children.Overall, polysaccharide vaccination had no long-term impact on pneumococcal carriage, but may have impacted on S. aureus carriage and have varying effects in ethnic groups, suggesting current WHO vaccine schedule recommendations against the use of 23vPPV in children under two years of age are appropriate
Reduced IL-17A Secretion Is Associated with High Levels of Pneumococcal Nasopharyngeal Carriage in Fijian Children.
Streptococcus pneumonia (the pneumococcus) is the leading vaccine preventable cause of serious infections in infants under 5 years of age. The major correlate of protection for pneumococcal infections is serotype-specific IgG antibody. More recently, antibody-independent mechanisms of protection have also been identified. Preclinical studies have found that IL-17 secreting CD4+ Th17 cells in reducing pneumococcal colonisation. This study assessed IL-17A levels in children from Fiji with high and low pneumococcal carriage density, as measured by quantitative real-time PCR (qPCR). We studied Th17 responses in 54 children who were designated as high density carriers (N=27, >8.21x10(5) CFU/ml) or low density carriers (N=27, <1.67x10(5) CFU/ml). Blood samples were collected, and isolated peripheral blood mononuclear cells (PBMCs) were stimulated for 6 days. Supernatants were harvested for cytokine analysis by multiplex bead array and/or ELISA. Th17 cytokines assayed included IL-17A, IL-21, IL-22 as well as TNF-α, IL-10, TGF-β, IL-6, IL-23 and IFNγ. Cytokine levels were significantly lower in children with high density pneumococcal carriage compared with children with low density carriage for IL-17A (p=0.002) and IL-23 (p=0.04). There was a trend towards significance for IL-22 (p=0.057) while no difference was observed for the other cytokines. These data provide further support for the role of Th17-mediated protection in humans and suggest that these cytokines may be important in the defence against pneumococcal carriage
Factors associated with pneumococcal carriage and density in children and adults in Fiji, using four cross-sectional surveys.
This study describes predictors of pneumococcal nasopharyngeal carriage and density in Fiji. We used data from four annual (2012-2015) cross-sectional surveys, pre- and post-introduction of ten-valent pneumococcal conjugate vaccine (PCV10) in October 2012. Infants (5-8 weeks), toddlers (12-23 months), children (2-6 years), and their caregivers participated. Pneumococci were detected and quantified using lytA qPCR, with molecular serotyping by microarray. Logistic and quantile regression were used to determine predictors of pneumococcal carriage and density, respectively. There were 8,109 participants. Pneumococcal carriage was negatively associated with years post-PCV10 introduction (global P<0.001), and positively associated with indigenous iTaukei ethnicity (aOR 2.74 [95% CI 2.17-3.45] P<0.001); young age (infant, toddler, and child compared with caregiver participant groups) (global P<0.001); urban residence (aOR 1.45 [95% CI 1.30-2.57] P<0.001); living with ≥2 children <5 years of age (aOR 1.42 [95% CI 1.27-1.59] P<0.001); low family income (aOR 1.44 [95% CI 1.28-1.62] P<0.001); and upper respiratory tract infection (URTI) symptoms (aOR 1.77 [95% CI 1.57-2.01] P<0.001). Predictors were similar for PCV10 and non-PCV10 carriage, except PCV10 carriage was negatively associated with PCV10 vaccination (0.58 [95% CI 0.41-0.82] P = 0.002) and positively associated with exposure to household cigarette smoke (aOR 1.21 [95% CI 1.02-1.43] P = 0.031), while there was no association between years post-PCV10 introduction and non-PCV10 carriage. Pneumococcal density was positively associated with URTI symptoms (adjusted median difference 0.28 [95% CI 0.16, 0.40] P<0.001) and toddler and child, compared with caregiver, participant groups (global P = 0.008). Predictors were similar for PCV10 and non-PCV10 density, except infant, toddler, and child participant groups were not associated with PCV10 density. PCV10 introduction was associated with reduced the odds of overall and PCV10 pneumococcal carriage in Fiji. However, after adjustment iTaukei ethnicity was positively associated with pneumococcal carriage compared with Fijians of Indian Descent, despite similar PCV10 coverage rates
Associations between ethnicity, social contact, and pneumococcal carriage three years post-PCV10 in Fiji.
BACKGROUND: Pneumococcal carriage is a prerequisite for pneumococcal disease. Little is known about whether social contact frequency and intensity are associated with pneumococcal carriage. In Fiji, indigenous iTaukei have higher prevalence of pneumococcal carriage compared with Fijians of Indian Descent (FID). We hypothesised that contact differences may contribute to ethnic differences in pneumococcal carriage prevalence and density. METHODS: In 2015, young infants (5-8 weeks), toddlers (12-23 months), children (2-6 years), and caregivers from Suva and surrounding areas, participated in a cross-sectional survey (n = 2014), three years post pneumococcal conjugate vaccine introduction. Demographic and contact data, and nasopharyngeal swabs were collected. Pneumococci were detected, and quantified using quantitative real-time PCR, with molecular serotyping by microarray. Associations between ethnicity, contact, and pneumococcal carriage and density were estimated using multivariable generalised estimating equation regression models. RESULTS: iTaukei participants had larger household sizes, higher pneumococcal carriage rates, more contacts, and more frequent contacts of longer duration, compared with FID. The odds of vaccine-type carriage increased by 28% (95% CI 8-53%) P < 0.01 in association with physical contact with 7-14 year old children. iTaukei ethnicity was associated with vaccine-type carriage (aOR) 1.73; 95% CI 1.06-2.82, P = 0.03) and non-vaccine type carriage (aOR 5.98; 95% CI 4.47-8.00, P < 0.01). Ethnicity and contact were not associated with pneumococcal density. CONCLUSIONS: iTaukei had greater frequency and intensity of contact compared with FID. Physical contact was associated with pneumococcal carriage. Observed differences in pneumococcal nasopharyngeal carriage prevalence between iTaukei and FID were not explained by differences in social contact patterns by ethnicity
The Challenges of Using Oropharyngeal Samples To Measure Pneumococcal Carriage in Adults
ABSTRACT Streptococcus pneumoniae (the pneumococcus) carriage is commonly used to measure effects of pneumococcal vaccines. Based on findings from culture-based studies, the World Health Organization recommends both nasopharyngeal (NP) and oropharyngeal (OP) sampling for detecting adult carriage. Given evidence of potential confounding by other streptococci, we evaluated molecular methods for pneumococcal identification and serotyping from 250 OP samples collected from adults in Fiji, using paired NP samples for comparison. Samples were screened using lytA quantitative PCR (qPCR), as well as pneumococcal identification and serotyping conducted by DNA microarray. A subset of OP samples were characterized by latex sweep agglutination and multiplex PCR. Alternate qPCR assays (piaB and bguR) for pneumococcal identification were evaluated. The lytA qPCR was less specific and had poor positive predictive value (PPV) in OP samples (88% and 26%, respectively) compared with NP samples (95% and 64%, respectively). Using additional targets piaB and/or bguR improved qPCR specificity in OP, although the PPV (42 to 53%) was still poor. Using microarray, we found that 102/107 (95%) of OP samples contained nonpneumococcal streptococci with partial or divergent complements of pneumococcal capsule genes. We explored 91 colonies isolated from 11 OP samples using various techniques, including multiplex PCR, latex agglutination, and microarray. We found that nonpneumococcal streptococci contribute to false positives in pneumococcal serotyping and may also contribute to spurious identification by qPCR. Our results highlight that molecular approaches should include multiple loci to minimize false-positive results when testing OP samples. Regardless of method, pneumococcal identification and serotyping results from OP samples should be interpreted with caution. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a significant global pathogen. Accurate identification and serotyping are vital. In contrast with World Health Organization recommendations based on culture methods, we demonstrate that pneumococcal identification and serotyping with molecular methods are affected by sample type. Results from oropharyngeal samples from adults were often inaccurate. This is particularly important for assessment of vaccine impact using carriage studies, particularly in low- and middle-income countries where there are significant barriers for disease surveillance
No long-term evidence of hyporesponsiveness after use of pneumococcal conjugate vaccine in children previously immunized with pneumococcal polysaccharide vaccine.
BACKGROUND: A randomized controlled trial in Fiji examined the immunogenicity and effect on nasopharyngeal carriage after 0, 1, 2, or 3 doses of 7-valent pneumococcal conjugate vaccine (PCV7; Prevnar) in infancy followed by 23-valent pneumococcal polysaccharide vaccine (23vPPV; Pneumovax) at 12Â months of age. At 18Â months of age, children given 23vPPV exhibited immune hyporesponsiveness to a micro-23vPPV (20%) challenge dose in terms of serotype-specific IgG and opsonophagocytosis, while 23vPPV had no effect on vaccine-type carriage. OBJECTIVE: This follow-up study examined the long-term effect of the 12-month 23vPPV dose by evaluating the immune response to 13-valent pneumococcal conjugate vaccine (PCV13) administration 4 to 5Â years later. METHODS: Blood samples from 194 children (now 5-7Â years old) were taken before and 28Â days after PCV13 booster immunization. Nasopharyngeal swabs were taken before PCV13 immunization. We measured levels of serotype-specific IgG to all 13 vaccine serotypes, opsonophagocytosis for 8 vaccine serotypes, and memory B-cell responses for 18 serotypes before and after PCV13 immunization. RESULTS: Paired samples were obtained from 185 children. There were no significant differences in the serotype-specific IgG, opsonophagocytosis, or memory B-cell response at either time point between children who did or did not receive 23vPPV at 12Â months of age. Nasopharyngeal carriage of PCV7 and 23vPPV serotypes was similar among the groups. Priming with 1, 2, or 3 PCV7 doses during infancy did not affect serotype-specific immunity or carriage. CONCLUSION: Immune hyporesponsiveness induced by 23vPPV in toddlers does not appear to be sustained among preschool children in this context and does not affect the pneumococcal carriage rate in this age group
IL-17A levels in children with high and low pneumococcal carriage densities.
<p>(A) Carriage density >8.21 x 10<sup>5</sup> CFU/ml was defined as a ‘high’ carrier and <1.67 x 10<sup>5</sup> CFU/ml was defined as a ‘low’ carrier. Scatter plots show the median <b>±</b> interquartile range for children with high carriage (N = 27) and low carriage (N = 27). Statistical comparisons were done using Mann-Whitney U test. (B) IL-17A levels in PBMC supernatants from children in Fiji with high (N = 27) or low (N = 27) pneumococcal carriage densities as well as children that did not carry pneumococcus (N = 29). Bars represent mean ± SEM. Statistical comparisons were done using an unpaired Student’s t test.</p
Correlation between IL-17A and other Th17 cytokines IL-22 (A) and IL-23 (B) levels in PBMCs from children with high and low pneumococcal carriage density (N = 46).
<p>The Spearman test was used to correlate the cytokine levels.</p
Relationship between pneumococcal carriage densities and IL-17A levels (A) Pneumococcal nasopharyngeal (NP) carriage densities in all 65 children from Fiji was measured by qPCR.
<p>IL-17A was measured by multiplex bead array. One child was removed from the analysis as an outlier (Carriage density = 1.65x10<sup>5</sup> CFU/ml, IL-17A = 1710pg/ml). The correlation with the outlier was R = -0.19, p = 0.126. Correlation between IL-17A and children with low pneumococcal carriage density (B; N = 27) or children with high pneumococcal carriage density (C; N = 27). The Spearman test was used to correlate children with pneumococcal carriage density and IL-17A levels.</p
Th17/Treg balance is different in children with low and high pneumococcal carriage densities.
<p>The Th17/Treg axis is shown for IL-17A/IL-10 (A) and IL-17A/TGF-β (B) Bars represent mean ± SEM. Comparisons were done using an unpaired Student’s test.</p