386 research outputs found

    Arthroscopic iliac crest bone grafting in recurrent anterior shoulder instability: minimum 5-year clinical and radiologic follow-up

    Get PDF
    Purpose: To investigate the clinical and radiologic mid- to long-term results of arthroscopic iliac crest bone-grafting for anatomic glenoid reconstruction in patients with recurrent anterior shoulder instability. Methods: Seventeen patients were evaluated after a minimum follow-up of 5 years. Clinical [range of motion, subscapularis tests, apprehension sign, Subjective Shoulder Value (SSV), Constant Score (CS), Rowe Score (RS), Walch Duplay Score (WD), Western Ontario Shoulder Instability Index (WOSI)], and radiologic [X-ray (true a.p., Bernageau and axillary views) and computed tomography (CT)] outcome parameters were assessed. Results: Fourteen patients [mean age 31.1 (range 18–50) years] were available after a follow-up period of 78.7 (range 60–110) months. The SSV averaged 87 (range 65–100) %, CS 94 (range 83–100) points, RS 89 (range 30–100) points, WD 87 (range 25–100) points, and WOSI 70 (range 47–87) %. The apprehension sign was positive in two patients (14%). One patient required an arthroscopic capsular plication due to a persisting feeling of instability, while the second patient experienced recurrent dislocations after a trauma, but refused revision surgery. CT imaging showed a signifcant increase of the glenoid index from preoperative 0.8±0.04 (range 0.7–0.8) to 1.0±0.11 (range 0.8–1.2) at the fnal follow-up (p<0.01). Conclusion: Arthroscopic reconstruction of anteroinferior glenoid defects using an autologous iliac crest bone-grafting tech nique yields satisfying clinical and radiologic results after a mid- to long-term follow-up period. Postoperative re-dislocation was experienced in one (7.1%) of the patients due to a trauma and an anatomic reconstruction of the pear-shaped glenoid confguration was observed. Level of evidence IV

    Immunopathological properties of the Campylobacter jejuni flagellins and the adhesin CadF as assessed in a clinical murine infection model

    Get PDF
    Background: Campylobacter jejuni infections constitute serious threats to human health with increasing prevalences worldwide. Our knowledge regarding the molecular mechanisms underlying host-pathogen interactions is still limited. Our group has established a clinical C. jejuni infection model based on abiotic IL-10-/- mice mimicking key features of human campylobacteriosis. In order to further validate this model for unraveling pathogen-host interactions mounting in acute disease, we here surveyed the immunopathological features of the important C. jejuni virulence factors FlaA and FlaB and the major adhesin CadF (Campylobacter adhesin to fibronectin), which play a role in bacterial motility, protein secretion and adhesion, respectively. Methods and results: Therefore, abiotic IL-10-/- mice were perorally infected with C. jejuni strain 81-176 (WT) or with its isogenic flaA/B (ΔflaA/B) or cadF (ΔcadF) deletion mutants. Cultural analyses revealed that WT and ΔcadF but not ΔflaA/B bacteria stably colonized the stomach, duodenum and ileum, whereas all three strains were present in the colon at comparably high loads on day 6 post-infection. Remarkably, despite high colonic colonization densities, murine infection with the ΔflaA/B strain did not result in overt campylobacteriosis, whereas mice infected with ΔcadF or WT were suffering from acute enterocolitis at day 6 post-infection. These symptoms coincided with pronounced pro-inflammatory immune responses, not only in the intestinal tract, but also in other organs such as the liver and kidneys and were accompanied with systemic inflammatory responses as indicated by increased serum MCP-1 concentrations following C. jejuni ΔcadF or WT, but not ΔflaA/B strain infection. Conclusion: For the first time, our observations revealed that the C. jejuni flagellins A/B, but not adhesion mediated by CadF, are essential for inducing murine campylobacteriosis. Furthermore, the secondary abiotic IL-10-/- infection model has been proven suitable not only for detailed investigations of immunological aspects of campylobacteriosis, but also for differential analyses of the roles of distinct C. jejuni virulence factors in induction and progression of disease

    Combining Soft Polysilazanes with Melt-Shear Organization of Core–Shell Particles: On the Road to Polymer-Templated Porous Ceramics

    Get PDF
    The preparation of ordered macroporous SiCN ceramics has attracted significant interest and is an attractive area for various applications, e.g., in the fields of catalysis, gas adsorption, or membranes. Non-oxidic ceramics, such as SiCN, own a great stability based on the covalent bonds between the containing elements, which leads to interesting properties concerning resistance and stability at high temperature. Their peculiar properties have become more and more important for a manifold of applications, like catalysis or separation processes, at high temperatures. Within this work, a feasible approach for the preparation of ordered porous materials by taking advantage of polymer-derived ceramics is presented. To gain access to free-standing films consisting of porous ceramic materials, the combination of monodisperse organic polymer-based colloids with diameters of 130 nm and 180 nm featuring a processable preceramic polymer is essential. For this purpose, the tailored design of hybrid organic/inorganic particles featuring anchoring sites for a preceramic polymer in the soft shell material is developed. Moreover, polymer-based core particles are used as sacrificial template for the generation of pores, while the preceramic shell polymer can be converted to the ceramic matrix after thermal treatment. Two different routes for the polymer particles, which can be obtained by emulsion polymerization, are followed for covalently linking the preceramic polysilazane Durazane1800 (Merck, Germany): (i) Free radical polymerization and (ii) atom transfer radical polymerization (ATRP) conditions. These hybrid hard core/soft shell particles can be processed via the so-called melt-shear organization for the one-step preparation of free-standing particle films. A major advantage of this technique is the absence of any solvent or dispersion medium, enabling the core particles to merge into ordered particle stacks based on the soft preceramic shell. Subsequent ceramization of the colloidal crystal films leads to core particle degradation and transformation into porous ceramics with ceramic yields of 18–54%

    Combining Soft Polysilazanes with Melt-Shear Organization of Core–Shell Particles: On the Road to Polymer-Templated Porous Ceramics

    Get PDF
    The preparation of ordered macroporous SiCN ceramics has attracted significant interest and is an attractive area for various applications, e.g., in the fields of catalysis, gas adsorption, or membranes. Non-oxidic ceramics, such as SiCN, own a great stability based on the covalent bonds between the containing elements, which leads to interesting properties concerning resistance and stability at high temperature. Their peculiar properties have become more and more important for a manifold of applications, like catalysis or separation processes, at high temperatures. Within this work, a feasible approach for the preparation of ordered porous materials by taking advantage of polymer-derived ceramics is presented. To gain access to free-standing films consisting of porous ceramic materials, the combination of monodisperse organic polymer-based colloids with diameters of 130 nm and 180 nm featuring a processable preceramic polymer is essential. For this purpose, the tailored design of hybrid organic/inorganic particles featuring anchoring sites for a preceramic polymer in the soft shell material is developed. Moreover, polymer-based core particles are used as sacrificial template for the generation of pores, while the preceramic shell polymer can be converted to the ceramic matrix after thermal treatment. Two different routes for the polymer particles, which can be obtained by emulsion polymerization, are followed for covalently linking the preceramic polysilazane Durazane1800 (Merck, Germany): (i) Free radical polymerization and (ii) atom transfer radical polymerization (ATRP) conditions. These hybrid hard core/soft shell particles can be processed via the so-called melt-shear organization for the one-step preparation of free-standing particle films. A major advantage of this technique is the absence of any solvent or dispersion medium, enabling the core particles to merge into ordered particle stacks based on the soft preceramic shell. Subsequent ceramization of the colloidal crystal films leads to core particle degradation and transformation into porous ceramics with ceramic yields of 18–54%
    • …
    corecore