465 research outputs found
Sampling functions for multimode homodyne tomography with a single local oscillator
We derive various sampling functions for multimode homodyne tomography with a
single local oscillator. These functions allow us to sample multimode
s-parametrized quasidistributions, density matrix elements in Fock basis, and
s-ordered moments of arbitrary order directly from the measured quadrature
statistics. The inevitable experimental losses can be compensated by proper
modification of the sampling functions. Results of Monte Carlo simulations for
squeezed three-mode state are reported and the feasibility of reconstruction of
the three-mode Q-function and s-ordered moments from 10^7 sampled data is
demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.
Quantum inference of states and processes
The maximum-likelihood principle unifies inference of quantum states and
processes from experimental noisy data. Particularly, a generic quantum process
may be estimated simultaneously with unknown quantum probe states provided that
measurements on probe and transformed probe states are available. Drawbacks of
various approximate treatments are considered.Comment: 7 pages, 4 figure
Sampling the canonical phase from phase-space functions
We discuss the possibility of sampling exponential moments of the canonical
phase from the s-parametrized phase space functions. We show that the sampling
kernels exist and are well-behaved for any s>-1, whereas for s=-1 the kernels
diverge in the origin. In spite of that we show that the phase space moments
can be sampled with any predefined accuracy from the Q-function measured in the
double-homodyne scheme with perfect detectors. We discuss the effect of
imperfect detection and address sampling schemes using other measurable
phase-space functions. Finally, we discuss the problem of sampling the
canonical phase distribution itself.Comment: 10 pages, 7 figures, REVTe
Conditional large Fock state preparation and field state reconstruction in Cavity QED
We propose a scheme for producing large Fock states in Cavity QED via the
implementation of a highly selective atom-field interaction. It is based on
Raman excitation of a three-level atom by a classical field and a quantized
field mode. Selectivity appears when one tunes to resonance a specific
transition inside a chosen atom-field subspace, while other transitions remain
dispersive, as a consequence of the field dependent electronic energy shifts.
We show that this scheme can be also employed for reconstructing, in a new and
efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio
Phase-space formulation of quantum mechanics and quantum state reconstruction for physical systems with Lie-group symmetries
We present a detailed discussion of a general theory of phase-space
distributions, introduced recently by the authors [J. Phys. A {\bf 31}, L9
(1998)]. This theory provides a unified phase-space formulation of quantum
mechanics for physical systems possessing Lie-group symmetries. The concept of
generalized coherent states and the method of harmonic analysis are used to
construct explicitly a family of phase-space functions which are postulated to
satisfy the Stratonovich-Weyl correspondence with a generalized traciality
condition. The symbol calculus for the phase-space functions is given by means
of the generalized twisted product. The phase-space formalism is used to study
the problem of the reconstruction of quantum states. In particular, we consider
the reconstruction method based on measurements of displaced projectors, which
comprises a number of recently proposed quantum-optical schemes and is also
related to the standard methods of signal processing. A general group-theoretic
description of this method is developed using the technique of harmonic
expansions on the phase space.Comment: REVTeX, 18 pages, no figure
Sinteza i bioloĹĄko djelovanje novih 1-benzil i 1-benzoil 3-heterocikliÄkih derivata indola
Starting from 1-benzyl- (2a) and 1-benzoyl-3-bromoacetyl indoles (2b) new heterocyclic, 2-thioxoimidazolidine (4a,b), imidazolidine-2,4-dione (5a,b), pyrano(2,3-d)imidazole (8a,b and 9a,b), 2-substituted quinoxaline (11a,bâ17a,b) and triazolo(4,3-a)quinoxaline derivatives (18a,b and 19a,b) were synthesized and evaluated for their antimicrobial and anticancer activities. Antimicrobial activity screening performed with concentrations of 0.88, 0.44 and 0.22 g mm2 showed that 3-(1-substituted indol-3-yl)quinoxalin-2(1H)ones (11a,b) and 2-(4-methyl piperazin-1-yl)-3-(1-substituted indol-3-yl) quinoxalines (15a,b) were the most active of all the tested compounds towards P. aeruginosa, B. cereus and S. aureus compared to the reference drugs cefotaxime and piperacillin, while 2-chloro-3-(1-substituted indol-3-yl)quinoxalines (12a,b) were the most active against C. albicans compared to the reference drug nystatin. On the other hand, 2-chloro-3-(1-benzyl indol-3-yl) quinoxaline (12a) display potent efficacy against ovarian cancer xenografts in nude mice with tumor growth suppression of 100 0.3 %.U radu je opisana sinteza, antimikrobno i antitumorsko djelovanje heterocikliÄkih derivata indola. PolazeÄi iz 1-benzil- i 1-benzoil-3-bromacetil indola (2a i 2b) sintetizirani su novi heterocikliÄki spojevi 2-tioksoimidazolidini (4a,b), imidazolidin-2,4-dioni (5a,b), pirano(2,3-d)imidazoli (8a,b i 9a,b), 2-supstituirani kinoksalini (11a,bâ17a,b) i triazolo(4,3-a)kinoksalini (18a,b i 19a,b). Sintetizirani spojevi testirani su na antimikrobno i antitumorsko djelovanje. Ispitivanje antimikrobnog djelovanja provedeno je s koncentracijama otopina 0,88, 0,44 i 0,22 g mm2 i usporeÄeno s referentnim lijekovima cefotaksimom i piperacilinom. Rezultati pokazuju da su 3-(1-supstituirani indol-3-il)kinoksalin-2(1H)oni (11a,b) i 2-(4-metil piperazin-1-il)-3-(1-supstituirani indol-3-il) kinoksalini (15a,b) najaktivniji spojevi na sojeve P. aeruginosa, B. cereus i S. aureus, dok su 2-klor-3-(1-supstituirani indol-3-il)kinoksalini (12a,b) najaktivniji na C. albicans (usporedba s nistatinom). Osim toga, 2-klor-3-(1-benzil indol-3-il) kinoksalin (12a) pokazuje veliku uÄinkovitost na tumore ovarija miĹĄeva (supresija rasta tumora 100 0,3 %)
Euclid: modelling massive neutrinos in cosmology - a code comparison
Material outgassing in a vacuum leads to molecular contamination, a well-known problem in spaceflight. Water is the most common contaminant in cryogenic spacecraft, altering numerous properties of optical systems. Too much ice means that Euclidâs calibration requirements cannot be met anymore. Euclid must then be thermally decontaminated, which is a month-long risky operation. We need to understand how ice affects our data to build adequate calibration and survey plans. A comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records. We then review the formation of thin ice films, and find that for Euclid a mix of amorphous and crystalline ices is expected. Their surface topography â and thus optical properties â depend on the competing energetic needs of the substrate-water and the water-water interfaces, and they are hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images of thin ice films. Sophisticated tools exist to compute contamination rates, and we must understand their underlying physical principles and uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of outgassing estimates. We developed a water transport model to compute contamination rates in Euclid, and find agreement with industry estimates within the uncertainties. Tests of the Euclid flight hardware in space simulators did not pick up significant contamination signals, but they were also not geared towards this purpose; our in-flight calibration observations will be much more sensitive. To derive a calibration and decontamination strategy, we need to understand the link between the amount of ice in the optics and its effect on the data. There is little research about this, possibly because other spacecraft can decontaminate more easily, quenching the need for a deeper understanding. In our second paper, we quantify the impact of iced optics on Euclidâs data
Euclid preparation. XXIV. Calibration of the halo mass function in Î(ν)CDM cosmologies
Euclidâs photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einsteinâde Sitter and standard ÎCDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the ÎCDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future massâobservation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference
Euclid preparation:XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images
Next generation telescopes, such as Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, not only as they are faster to apply to data samples than traditional methods, but because they are also often more accurate. Properly understanding their applications and limitations for the exploitation of these data is of utmost importance. In this paper we present an exploration of this topic by investigating how well redshifts, stellar masses, and star-formation rates can be measured with deep learning algorithms for galaxies within data that mimics the Euclid and Rubin/LSST surveys. We find that Deep Learning Neural Networks and Convolutional Neutral Networks (CNN), which are dependent on the parameter space of the sample used for training, perform well in measuring the properties of these galaxies and have an accuracy which is better than traditional methods based on spectral energy distribution fitting. CNNs allow the processing of multi-band magnitudes together with -band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and star-formation rates do not. Our best machine learning results are deriving i) the redshift within a normalised error of less than 0.15 for 99.9% of the galaxies in the sample with S/N>3 in the -band; ii) the stellar mass within a factor of two (0.3 dex) for 99.5% of the considered galaxies; iii) the star-formation rates within a factor of two (0.3 dex) for 70% of the sample. We discuss the implications of our work for application to surveys, mainly but not limited to Euclid and Rubin/LSST, and how measurements of these galaxy parameters can be improved with deep learning
- âŚ