3,993 research outputs found
Tunable reflection minima of nanostructured antireflective surfaces
Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application
Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems
The many-body Monte Carlo method is used to evaluate the frequency dependent
conductivity and the average mobility of a system of hopping charges,
electronic or ionic on a one-dimensional chain or channel of finite length. Two
cases are considered: the chain is connected to electrodes and in the other
case the chain is confined giving zero dc conduction. The concentration of
charge is varied using a gate electrode. At low temperatures and with the
presence of an injection barrier, the mobility is an oscillatory function of
density. This is due to the phenomenon of charge density pinning. Mobility
changes occur due to the co-operative pinning and unpinning of the
distribution. At high temperatures, we find that the electron-electron
interaction reduces the mobility monotonically with density, but perhaps not as
much as one might intuitively expect because the path summation favour the
in-phase contributions to the mobility, i.e. the sequential paths in which the
carriers have to wait for the one in front to exit and so on. The carrier
interactions produce a frequency dependent mobility which is of the same order
as the change in the dc mobility with density, i.e. it is a comparably weak
effect. However, when combined with an injection barrier or intrinsic disorder,
the interactions reduce the free volume and amplify disorder by making it
non-local and this can explain the too early onset of frequency dependence in
the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review
Recommended from our members
Strategies for successful field deployment in a resource-poor region: Arsenic remediation technology for drinking water
Strong long-term international partnership in science, technology, finance and policy is critical for sustainable field experiments leading to successful commercial deployment of novel technology at community-scale. Although technologies already exist that can remediate arsenic in groundwater, most are too expensive or too complicated to operate on a sustained basis in resource-poor communities with the low technical skill common in rural South Asia. To address this specific problem, researchers at University of California-Berkeley (UCB) and Lawrence Berkeley National Laboratory (LBNL) invented a technology in 2006 called electrochemical arsenic remediation (ECAR). Since 2010, researchers at UCB and LBNL have collaborated with Global Change Program of Jadavpur University (GCP-JU) in West Bengal, India for its social embedding alongside a local private industry group, and with financial support from the Indo-US Technology Forum (IUSSTF) over 2012ā2017. During the first 10 months of pilot plant operation (April 2016 to January 2017) a total of 540 m3 (540,000 L) of arsenic-safe water was produced, consistently and reliably reducing arsenic concentrations from initial 252 Ā± 29 to final 2.9 Ā± 1 parts per billion (ppb). This paper presents the critical strategies in taking a technology from a lab in the USA to the field in India for commercialization to address the technical, socio-economic, and political aspects of the arsenic public health crisis while targeting several sustainable development goals (SDGs). The lessons learned highlight the significance of designing a technology contextually, bridging the knowledge divide, supporting local livelihoods, and complying with local regulations within a defined Critical Effort Zone period with financial support from an insightful funding source focused on maturing inventions and turning them into novel technologies for commercial scale-up. Along the way, building trust with the community through repetitive direct interactions, and communication by the scientists, proved vital for bridging the technology-society gap at a critical stage of technology deployment. The information presented here fills a knowledge gap regarding successful case studies in which the arsenic remediation technology obtains social acceptance and sustains technical performance over time, while operating with financial viability
The Gould's Belt distance survey
Very Long Baseline Interferometry (VLBI) observations can provide the
position of compact radio sources with an accuracy of order 50
micro-arcseconds. This is sufficient to measure the trigonometric parallax and
proper motions of any object within 500 pc of the Sun to better than a few
percent. Because they are magnetically active, young stars are often associated
with compact radio emission detectable using VLBI techniques. Here we will show
how VLBI observations have already constrained the distance to the most often
studied nearby regions of star-formation (Taurus, Ophiuchus, Orion, etc.) and
have started to provide information on their internal structure and kinematics.
We will then briefly describe a large project (called The Gould's Belt Distance
Survey) designed to provide a detailed view of star-formation in the Solar
neighborhood using VLBI observations.Comment: To be published in the Revista Mexicana de Astronomia y Astrofisica
(Serie de Conferencias
Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1
FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FTālike genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FTāB1 through analysis of FTāB1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FTāB1 alleles perform differently under diverse environmental conditions; most notably, the FTāB1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FTāB1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FTādependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature
Creativity and Autonomy in Swarm Intelligence Systems
This work introduces two swarm intelligence algorithms -- one mimicking the behaviour of one species of ants (\emph{Leptothorax acervorum}) foraging (a `Stochastic Diffusion Search', SDS) and the other algorithm mimicking the behaviour of birds flocking (a `Particle Swarm Optimiser', PSO) -- and outlines a novel integration strategy exploiting the local search properties of the PSO with global SDS behaviour. The resulting hybrid algorithm is used to sketch novel drawings of an input image, exploliting an artistic tension between the local behaviour of the `birds flocking' - as they seek to follow the input sketch - and the global behaviour of the `ants foraging' - as they seek to encourage the flock to explore novel regions of the canvas. The paper concludes by exploring the putative `creativity' of this hybrid swarm system in the philosophical light of the `rhizome' and Deleuze's well known `Orchid and Wasp' metaphor
Extending the first-order post-Newtonian scheme in multiple systems to the second-order contributions to light propagation
In this paper, we extend the first-order post-Newtonian scheme in multiple
systems presented by Damour-Soffel-Xu to the second-order contribution to light
propagation without changing the virtueof the scheme on the linear partial
differential equations of the potential and vector potential. The spatial
components of the metric are extended to second order level both in a global
coordinates () and a local coordinates (). The
equations of (or ) are obtained from the field equations.The
relationship between and are presented in this paper also. In
special case of the solar system (isotropic condition is applied ()), we obtain the solution of . Finally, a further extension
of the second-order contributions in the parametrized post-Newtonian formalism
is discussed.Comment: Latex2e; 6 pages PS fil
A Coverage Criterion for Spaced Seeds and its Applications to Support Vector Machine String Kernels and k-Mer Distances
Spaced seeds have been recently shown to not only detect more alignments, but
also to give a more accurate measure of phylogenetic distances (Boden et al.,
2013, Horwege et al., 2014, Leimeister et al., 2014), and to provide a lower
misclassification rate when used with Support Vector Machines (SVMs) (On-odera
and Shibuya, 2013), We confirm by independent experiments these two results,
and propose in this article to use a coverage criterion (Benson and Mak, 2008,
Martin, 2013, Martin and No{\'e}, 2014), to measure the seed efficiency in both
cases in order to design better seed patterns. We show first how this coverage
criterion can be directly measured by a full automaton-based approach. We then
illustrate how this criterion performs when compared with two other criteria
frequently used, namely the single-hit and multiple-hit criteria, through
correlation coefficients with the correct classification/the true distance. At
the end, for alignment-free distances, we propose an extension by adopting the
coverage criterion, show how it performs, and indicate how it can be
efficiently computed.Comment: http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.017
- ā¦