1,029 research outputs found
Specifying Links Between Executive Functioning and Theory of Mind during Middle Childhood: Cognitive Flexibility Predicts Social Understanding
The purpose of this study was to specify the development of and links between executive functioning and theory of mind during middle childhood. One hundred four 7- to 12-year-old children completed a battery of age-appropriate tasks measuring working memory, inhibition, flexibility, theory of mind, and vocabulary. As expected, spatial working memory and flexibility increased significantly with age, especially after 7 years. Moreover, flexibility predicted social understanding over and above the effects of age, vocabulary, working memory, and inhibition. Together, these findings highlight improvements in and tight relations between complex aspects of executive functioning and theory of mind during middle childhood and suggest that executive functioning and theory of mind are linked beyond their emergence in early childhood
Defining primary refractory large B-cell lymphoma
Patients with large B-cell lymphoma (LBCL) that fail to achieve a complete response (CR) or who relapse early after anthracycline-containing immunochemotherapy (IC) have a poor prognosis and are commonly considered to have primary refractory disease. However, different definitions of primary refractory disease are used in the literature and clinical practice. In this study, we examined variation in the time to relapse used to define refractory status and association with survival outcomes in patients with primary refractory LBCL in a single-center prospective cohort with validation in an independent multicenter cohort. Patients with newly diagnosed LBCL were enrolled in the Molecular Epidemiological Resource cohort (MER; N = 949) or the Lymphoma Epidemiology of Outcomes cohort (LEO; N = 2755) from September 2002 to May 2021. Primary refractory LBCL was defined as no response (stable disease [SD]) or progressive disease (PD) during, or by the end of, frontline (1L) IC (primary PD; PPD); partial response at end of treatment (EOT PR); or relapse within 3 to 12 months after achieving CR at EOT to 1L IC (early relapse). In the MER cohort, patients with PPD had inferior overall survival (OS; 2-year OS rate: 15% MER, 31% LEO) when compared with other subgroups considered in defining primary refractory disease, EOT PR (2-year OS rate: 38% MER, 50% LEO) and early relapse (2-year OS rate: 44% MER, 58% LEO). Among patients receiving 1L IC with curative intent, we identified that patients with PPD are the key subgroup with poor outcomes. We propose a definition of primary refractory LBCL as SD or PD during, or by the end of, 1L treatment
Clinician perception of care at the end of life in a quaternary neonatal intensive care unit
IntroductionCare for neonates at the end of life (EOL) is often challenging for families and medical teams alike, performed suboptimally, and requires an experienced and compassionate clinician. Much literature exists on adult and pediatric EOL care, but limited studies examine the neonatal process.MethodsWe aimed to describe clinicians' experiences around EOL care in a single quaternary neonatal intensive care unit as we implemented a standard guideline using the Pediatric Intensive Care Unit-Quality of Dying and Death 20 tool.ResultsSurveys were completed by 205 multidisciplinary clinicians over three time periods and included 18 infants at EOL. While most responses were high, a meaningful minority were below goal (<8 on 0–10 scale) for troubling symptom management, conflict between parents and staff, family access to resources, and parent preparation of symptoms. Comparison between Epochs revealed improvement in one symptom management and four communication categories. Satisfaction scores related to education around EOL were better in later Epochs. Neonatal Pain, Agitation, and Sedation Scale scores were low, with few outliers.DiscussionThese findings can guide those aiming to improve processes around neonatal EOL by identifying areas with the greatest challenges (e.g., conflict management) and areas that need further study (e.g., pain management around death)
Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2
The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data
Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP
The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb
Measurement of triple gauge boson couplings from W⁺W⁻ production at LEP energies up to 189 GeV
A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻¹. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain κ = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations
Aptamer-based multiplexed proteomic technology for biomarker discovery
Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine
Measurement of the partial widths of the Z into up- and down-type quarks
Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma
decays were selected by tagging hadronic final states with isolated photon
candidates in the electromagnetic calorimeter. Combining the measured rates of
Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the
simultaneous determination of the widths of the Z into up- and down-type
quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18}
MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with
the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.
Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and
flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are
measured in e+e- annihilations from data collected at centre-of-mass energies
of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are
defined by hemispheres of inclusive hadronic events, while the biased jet
measurements are based on three-jet events selected with jet algorithms.
Several methods are employed to extract the fragmentation functions over a wide
range of scales. Possible biases are studied in the results are obtained. The
fragmentation functions are compared to results from lower energy e+e-
experiments and with earlier LEP measurements and are found to be consistent.
Scaling violations are observed and are found to be stronger for the
fragmentation functions of gluon jets than for those of quarks. The measured
fragmentation functions are compared to three recent theoretical
next-to-leading order calculations and to the predictions of three Monte Carlo
event generators. While the Monte Carlo models are in good agreement with the
data, the theoretical predictions fail to describe the full set of results, in
particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
Measurements of Flavour Dependent Fragmentation Functions in Z^0 -> qq(bar) Events
Fragmentation functions for charged particles in Z -> qq(bar) events have
been measured for bottom (b), charm (c) and light (uds) quarks as well as for
all flavours together. The results are based on data recorded between 1990 and
1995 using the OPAL detector at LEP. Event samples with different flavour
compositions were formed using reconstructed D* mesons and secondary vertices.
The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max
are also presented separately for uds, c and b quark events. The fragmentation
function for b quarks is significantly softer than for uds quarks.Comment: 29 pages, LaTeX, 5 eps figures (and colour figs) included, submitted
to Eur. Phys. J.
- …