317 research outputs found
Ion channel function of aquaporin-1 natively expressed in choroid plexus
Aquaporins are known as water channels; however, an additional ion channel function has been observed for several including aquaporin-1 (AQP1). Using primary cultures of rat choroid plexus, a brain tissue that secretes CSF and abundantly expresses AQP1, we confirmed the ion channel function of AQP1 and assessed its functional relevance. The cGMP-gated cationic conductance associated with AQP1 is activated by an endogenous receptor guanylate cyclase for atrial natriuretic peptide (ANP). Fluid transport assays with confluent polarized choroid plexus cultures showed that AQP1 current activation by 4.5 μM ANP decreases the normal basal-to-apical fluid transport in the choroid plexus; conversely, AQP1 block with 500 μM Cd²⁺ restores fluid transport. The cGMP-gated conductance in the choroid plexus is lost with targeted knockdown of AQP1 by small interfering RNA (siRNA), as confirmed by immunocytochemistry and whole-cell patch electrophysiology of transiently transfected cells identified by enhanced green fluorescent protein. The properties of the current (permeability to Na⁺, K⁺, TEA⁺, and Cs⁺; voltage insensitivity; and dependence on cGMP) matched properties characterized previously in AQP1-expressing oocytes. Background K⁺ and Cl⁻ currents in the choroid plexus were dissected from AQP1 currents using Cs-methanesulfonate recording salines; the background currents recorded in physiological salines were not affected by AQP1–siRNA treatment. These results confirm that AQP1 can function as both a water channel and a gated ion channel. The conclusion that the AQP1-associated cation current contributes to modulating CSF production resolves a lingering concern as to whether an aquaporin ionic conductance can have a physiologically relevant function.Daniela Boassa, W. Daniel Stamer and Andrea J. Yoo
Recommended from our members
The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGψ motif in the kinase domain.
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein, and LRRK2 mutants are recognized risk factors for Parkinson's disease (PD). Although the precise mechanisms that control LRRK2 regulation and function are unclear, the importance of the kinase domain is strongly implicated, since 2 of the 5 most common familial LRRK2 mutations (G2019S and I2020T) are localized to the conserved DFGψ motif in the kinase core, and kinase inhibitors are under development. Combining the concept of regulatory (R) and catalytic (C) spines with kinetic and cell-based assays, we discovered a major regulatory mechanism embedded within the kinase domain and show that the DFG motif serves as a conformational switch that drives LRRK2 activation. LRRK2 is quite unusual in that the highly conserved Phe in the DFGψ motif, which is 1 of the 4 R-spine residues, is replaced with tyrosine (DY2018GI). A Y2018F mutation creates a hyperactive phenotype similar to the familial mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a "brake" that stabilizes an inactive conformation; simply removing it destroys a key hydrogen-bonding node. Y2018F, like the pathogenic mutant I2020T, spontaneously forms LRRK2-decorated microtubules in cells, while the wild type and G2019S require kinase inhibitors to form filaments. We also explored 3 different mechanisms that create kinase-dead pseudokinases, including D2017A, which further emphasizes the highly synergistic role of key hydrophobic and hydrophilic/charged residues in the assembly of active LRRK2. We thus hypothesize that LRRK2 harbors a classical protein kinase switch mechanism that drives the dynamic activation of full-length LRRK2
Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.
In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins
3D reconstruction of biological structures: automated procedures for alignment and reconstruction of multiple tilt series in electron tomography
Transmission electron microscopy allows the collection of multiple views of specimens and their computerized three-dimensional reconstruction and analysis with electron tomography. Here we describe development of methods for automated multi-tilt data acquisition, tilt-series processing, and alignment which allow assembly of electron tomographic data from a greater number of tilt series, yielding enhanced data quality and increasing contrast associated with weakly stained structures. This scheme facilitates visualization of nanometer scale details of fine structure in volumes taken from plastic-embedded samples of biological specimens in all dimensions. As heavy metal-contrasted plastic-embedded samples are less sensitive to the overall dose rather than the electron dose rate, an optimal resampling of the reconstruction space can be achieved by accumulating lower dose electron micrographs of the same area over a wider range of specimen orientations. The computerized multiple tilt series collection scheme is implemented together with automated advanced procedures making collection, image alignment, and processing of multi-tilt tomography data a seamless process. We demonstrate high-quality reconstructions from samples of well-described biological structures. These include the giant Mimivirus and clathrin-coated vesicles, imaged in situ in their normal intracellular contexts. Examples are provided from samples of cultured cells prepared by high-pressure freezing and freeze-substitution as well as by chemical fixation before epoxy resin embedding
Advances in molecular probe-based labeling tools and their application to multiscale multimodal correlated microscopies
The need to determine the precise subcellular distribution of specific proteins and macromolecular complexes in cells and tissues has been the major driving force behind the development of new molecular-genetic and chemical-labeling approaches applicable to high-resolution, correlated, multidimensional microscopy. This short review is intended to provide an overview of recently developed and widely used electron microscopy (EM)-compatible probes, including tetracysteine tags, mini singlet oxygen generator (MiniSOG), time-specific tag for the age measurement of proteins (TimeSTAMP) with MiniSOG, and enhanced ascorbate peroxidase (APEX). We describe how these highly specific and genetically introduced EM probes are now used, in conjunction with lower resolution light microscopic methods, to obtain wide field or dynamic records of live preparation or of large maps in 3D using recently developed laboratory-scale X-ray microscopes. The article is intended to enable researchers through a high-level view of the toolbox of labels available today for studies aiming to analyze dynamic subcellular and molecular processes in cell culture systems as well as in animal tissues—and ultimately allow investigators to determine the precise location of macromolecular complexes by EM
Impaired dopamine metabolism in Parkinson's disease pathogenesis
A full understanding of Parkinson's Disease etiopathogenesis and of the causes of the preferential vulnerability of nigrostriatal dopaminergic neurons is still an unsolved puzzle. A multiple-hit hypothesis has been proposed, which may explain the convergence of familial, environmental and idiopathic forms of the disease. Among the various determinants of the degeneration of the neurons in Substantia Nigra pars compacta, in this review we will focus on the endotoxicity associated to dopamine dyshomeostasis. In particular, we will discuss the relevance of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) in the catechol-induced neurotoxicity. Indeed, the synergy between the catechol and the aldehyde moieties of DOPAL exacerbates its reactivity, resulting in modification of functional protein residues, protein aggregation, oxidative stress and cell death. Interestingly, \u3b1Synuclein, whose altered proteostasis is a recurrent element in Parkinson's Disease pathology, is considered a preferential target of DOPAL modification. DOPAL triggers \u3b1Synuclein oligomerization leading to synapse physiology impairment. Several factors can be responsible for DOPAL accumulation at the pre-synaptic terminals, i.e. dopamine leakage from synaptic vesicles, increased rate of dopamine conversion to DOPAL by upregulated monoamine oxidase and decreased DOPAL degradation by aldehyde dehydrogenases. Various studies report the decreased expression and activity of aldehyde dehydrogenases in parkinsonian brains, as well as genetic variants associated to increased risk in developing the pathology. Thus, we discuss how the deregulation of these enzymes might be considered a contributing element in the pathogenesis of Parkinson's Disease or a down-stream effect. Finally, we propose that a better understanding of the impaired dopamine metabolism in Parkinson's Disease would allow a more refined patients stratification and the design of more targeted and successful therapeutic strategies
Acute increase of alpha-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation
This work was supported by grants from the NIH/National Institute
of Neurological Disorder and Stroke RO1 NS078165 (to J.R.M.),
the Morton Cure Paralysis Fund (to J.R.M.), and the Branfman Family
Foundation (to J.M.G.) and by a Dorothea Bennett graduate
fellowship (to D.J.B.)
Sequestosome-1 (SQSTM1/p62) as a target in dopamine catabolite-mediated cellular dyshomeostasis
Alterations in the dopamine catabolic pathway are known to contribute to the degeneration of nigrostriatal neurons in Parkinson’s disease (PD). The progressive cellular buildup of the highly reactive intermediate 3,4-dihydroxyphenylacetaldehye (DOPAL) generates protein cross-linking, oligomerization of the PD-linked αSynuclein (αSyn) and imbalance in protein quality control. In this scenario, the autophagic cargo sequestome-1 (SQSTM1/p62) emerges as a target of DOPAL-dependent oligomerization and accumulation in cytosolic clusters. Although DOPAL-induced oxidative stress and activation of the Nrf2 pathway promote p62 expression, p62 oligomerization rather seems to be a consequence of direct DOPAL modification. DOPAL-induced p62 clusters are positive for ubiquitin and accumulate within lysosomal-related structures, likely affecting the autophagy-lysosomal functionality. Finally, p62 oligomerization and clustering is synergistically augmented by DOPAL-induced αSyn buildup. Hence, the substantial impact on p62 proteostasis caused by DOPAL appears of relevance for dopaminergic neurodegeneration, in which the progressive failure of degradative pathways and the deposition of proteins like αSyn, ubiquitin and p62 in inclusion bodies represent a major trait of PD pathology
- …
