63 research outputs found
Effects of a strong ICME on the Martian ionosphere as detected by Mars Express and Mars Odyssey
We present evidence of a substantial ionospheric response to a strong interplanetary coronal mass ejection (ICME) detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board the Mars Express (MEX) spacecraft. A powerful ICME impacted the Martian ionosphere beginning on 5 June 2011, peaking on 6 June, and trailing off over about a week. This event caused a strong response in the charged particle detector of the High-Energy Neutron Detector (HEND) on board the Odyssey spacecraft. The ion mass spectrometer of the Analyzer of Space Plasmas and Energetic Atoms instrument on MEX detected an increase in background counts, simultaneous with the increase seen by HEND, due to the flux of solar energetic particles (SEPs) associated with the ICME. Local densities and magnetic field strengths measured by MARSIS and enhancements of 100 eV electrons denote the passing of an intense space weather event. Local density and magnetosheath electron measurements and remote soundings show compression of ionospheric plasma to lower altitudes due to increased solar wind dynamic pressure. MARSIS topside sounding of the ionosphere indicates that it is extended well beyond the terminator, to about 116° solar zenith angle, in a highly disturbed state. This extension may be due to increased ionization due to SEPs and magnetosheath electrons or to plasma transport across the terminator. The surface reflection from both ionospheric sounding and subsurface modes of the MARSIS radar was attenuated, indicating increased electron content in the Mars ionosphere at low altitudes, where the atmosphere is dense
Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records
The most powerful explosions on the Sun [...] drive the most severe
space-weather storms. Proxy records of flare energies based on SEPs in
principle may offer the longest time base to study infrequent large events. We
conclude that one suggested proxy, nitrate concentrations in polar ice cores,
does not map reliably to SEP events. Concentrations of select radionuclides
measured in natural archives may prove useful in extending the time interval of
direct observations up to ten millennia, but as their calibration to solar
flare fluences depends on multiple poorly known properties and processes, these
proxies cannot presently be used to help determine the flare energy frequency
distribution. Being thus limited to the use of direct flare observations, we
evaluate the probabilities of large-energy solar explosions by combining solar
flare observations with an ensemble of stellar flare observations. We conclude
that solar flare energies form a relatively smooth distribution from small
events to large flares, while flares on magnetically-active, young Sun-like
stars have energies and frequencies markedly in excess of strong solar flares,
even after an empirical scaling with the mean activity level of these stars. In
order to empirically quantify the frequency of uncommonly large solar flares
extensive surveys of stars of near-solar age need to be obtained, such as is
feasible with the Kepler satellite. Because the likelihood of flares larger
than approximately X30 remains empirically unconstrained, we present indirect
arguments, based on records of sunspots and on statistical arguments, that
solar flares in the past four centuries have likely not substantially exceeded
the level of the largest flares observed in the space era, and that there is at
most about a 10% chance of a flare larger than about X30 in the next 30 years.Comment: 14 pages, 3 figures (in press as of 2012/06/18); Journal of
Geophysical Research (Space Physics), 201
Asteroids and Comets
Asteroids and comets are remnants from the era of Solar System formation over
4.5 billion years ago, and therefore allow us to address two fundamental
questions in astronomy: what was the nature of our protoplanetary disk, and how
did the process of planetary accretion occur? The objects we see today have
suffered many geophysically-relevant processes in the intervening eons that
have altered their surfaces, interiors, and compositions. In this chapter we
review our understanding of the origins and evolution of these bodies, discuss
the wealth of science returned from spacecraft missions, and motivate important
questions to be addressed in the future.Comment: 84 pages, 27 figures. To be published in Treatise on Geophysics, 2nd
edition (G. Schubert, Editor-in-Chief), Volume 10 (T. Spohn, Editor
What determines cell size?
AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it
Innovations in plasma sensors
During the history of space exploration, ever improving instruments have continued to enable new measurements and discoveries. Focusing on plasma sensors, we examine the processes by which such new instrument innovations have occurred over the past decades. Due to risk intolerance prevalent in many NASA space missions, innovations in plasma instrumentation occur primarily when heritage systems fail to meet science requirements, functional requirements as part of its space platform, or design constraints. We will review such innovation triggers in the context of the design literature and with the help of two case studies, the Fast Imaging Plasma Spectrometer on MErcury Surface, Space ENvironment, GEochemistry, and Ranging and the Fast Plasma Investigation on Magnetosphere Multiscale. We will then discuss the anticipated needs for new plasma instrument innovations to enable the science program of the next decade.Key PointsMost innovations in space plasma instrumentations arise from a mismatch of heritage technologiesThe detections of suprathermal and very low energy ions are innovation areas of the decadal surveyConstellations of small spacecraft enable novel and highly constrained plasma measurementsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137290/1/jgra52503.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137290/2/jgra52503_am.pd
- …