1,079 research outputs found

    The Kaon Form Factor in the Light-Cone Quark Model

    Get PDF
    The electromagnetic form factor of the kaon meson is calculated in the light-cone formalism of the relativistic constituent quark model. The calculated K+K^+ form factor is consistent with almost all of the available experimental data at low energy scale, while other properties of kaon could also be interrelated in this representation with reasonable parameters. Predictions of the form factors for the charged and neutral kaons at higher energy scale are also given, and we find non-zero K0K^0 form factor at Q2≠0Q^2 \ne 0 due to the mass difference between the strange and down quarks inside K0K^0.Comment: 12 latex pages, 2 figures, to appear in Eur.Phy.J.

    Interacting heavy fermions in a disordered optical lattice

    Full text link
    We have theoretically studied the effect of disorder on ultracold alkaline-earth atoms governed by the Kondo lattice model in an optical lattice via simplified double-well model and hybridization mean-field theory. Disorder-induced narrowing and even complete closure of hybridization gap have been predicted and the compressibility of the system has also been investigated for metallic and Kondo insulator phases in the presence of the disordered potential. To make connection to the experimental situation, we have numerically solved the disordered Kondo lattice model with an external harmonic trap and shown both the melting of Kondo insulator plateau and an compressibility anomaly at low-density

    Cyclotron Dynamics of a Kondo Singlet in a Spin-Orbit-Coupled Alkaline-Earth Atomic Gas

    Full text link
    We propose a scheme to investigate the interplay between Kondo-exchange interaction and quantum spin Hall effect with ultracold fermionic alkaline-earth atoms trapped in two-dimensional optical lattices using ultracold collision and laser-assisted tunneling. In the strong Kondo-coupling regime, though the loop trajectory of the mobile atom disappears, collective dynamics of an atom pair in two clock states can exhibit an unexpected spin-dependent cyclotron orbit in a plaquette, realizing the quantum spin Hall effect of the Kondo singlet. We demonstrate that the collective cyclotron dynamics of the spin-zero Kondo singlet is governed by an effective Harper-Hofstadter model in addition to second-order diagonal tunneling

    "It Felt Like Having a Second Mind": Investigating Human-AI Co-creativity in Prewriting with Large Language Models

    Full text link
    Prewriting is the process of discovering and developing ideas before a first draft, which requires divergent thinking and often implies unstructured strategies such as diagramming, outlining, free-writing, etc. Although large language models (LLMs) have been demonstrated to be useful for a variety of tasks including creative writing, little is known about how users would collaborate with LLMs to support prewriting. The preferred collaborative role and initiative of LLMs during such a creativity process is also unclear. To investigate human-LLM collaboration patterns and dynamics during prewriting, we conducted a three-session qualitative study with 15 participants in two creative tasks: story writing and slogan writing. The findings indicated that during collaborative prewriting, there appears to be a three-stage iterative Human-AI Co-creativity process that includes Ideation, Illumination, and Implementation stages. This collaborative process champions the human in a dominant role, in addition to mixed and shifting levels of initiative that exist between humans and LLMs. This research also reports on collaboration breakdowns that occur during this process, user perceptions of using existing LLMs during Human-AI Co-creativity, and discusses design implications to support this co-creativity process.Comment: Under review at CSCW after a Major Revisio

    Deep Learning the Effects of Photon Sensors on the Event Reconstruction Performance in an Antineutrino Detector

    Full text link
    We provide a fast approach incorporating the usage of deep learning for evaluating the effects of photon sensors in an antineutrino detector on the event reconstruction performance therein. This work is an attempt to harness the power of deep learning for detector designing and upgrade planning. Using the Daya Bay detector as a benchmark case and the vertex reconstruction performance as the objective for the deep neural network, we find that the photomultiplier tubes (PMTs) have different relative importance to the vertex reconstruction. More importantly, the vertex position resolutions for the Daya Bay detector follow approximately a multi-exponential relationship with respect to the number of PMTs and hence, the coverage. This could also assist in deciding on the merits of installing additional PMTs for future detector plans. The approach could easily be used with other objectives in place of vertex reconstruction

    Vector meson ω\omega-ϕ\phi mixing and their form factors in light-cone quark model

    Full text link
    The vector meson ω\omega-ϕ\phi mixing is studied in two alternative scenarios with different numbers of mixing angles, i.e., the one-mixing-angle scenario and the two-mixing-angle scenario, in both the octect-singlet mixing scheme and the quark flavor mixing scheme. Concerning the reproduction of experimental data and the Q2Q^2 behavior of transition form factors, one-mixing-angle scenario in the quark flavor scheme performs better than that in the octet-singlet scheme, while the two-mixing-angle scenario works well for both mixing schemes. The difference between the two mixing angles in the octet-singlet scheme is bigger than that in the quark flavor scheme.Comment: 16 pages, 7 figures, final version to appear in PR
    • …
    corecore