129 research outputs found
The Optically Unbiased GRB Host (TOUGH) survey. IV. Lyman-alpha emitters
We report the results of a spectroscopic search for Lyman-alpha emission from
gamma-ray burst host galaxies. Based on the well-defined TOUGH sample of 69
X-ray selected Swift GRBs, we have targeted the hosts of a subsample of 20 GRBs
known from afterglow spectroscopy to be in the redshift range 1.8-4.5. We
detect Lya emission from 7 out of the 20 hosts, with the typical limiting
3sigma line flux being 8E-18 erg/cm2/s, corresponding to a Lya luminosity of
6E41 erg/s at z=3. The Lya luminosities for the 7 hosts in which we detect Lya
emission are in the range (0.6-2.3)E42 erg/s corresponding to star-formation
rates of 0.6-2.1 Msun/yr (not corrected for extinction). The rest-frame Lya
equivalent widths (EWs) for the 7 hosts are in the range 9-40A. For 6 of the 13
hosts for which Lya is not detected we place fairly strong 3sigma upper limits
on the EW (<20A), while for others the EW is either unconstrained or has a less
constraining upper limit. We find that the distribution of Lya EWs is
inconsistent with being drawn from the Lya EW distribution of bright Lyman
break galaxies at the 98.3% level, in the sense that the TOUGH hosts on average
have larger EWs than bright LBGs. We can exclude an early indication, based on
a smaller, heterogeneous sample of pre-Swift GRB hosts, that all GRB hosts are
Lya emitters. We find that the TOUGH hosts on average have lower EWs than the
pre-Swift GRB hosts, but the two samples are only inconsistent at the 92%
level. The velocity centroid of the Lya line is redshifted by 200-700 km/s with
respect to the systemic velocity, similar to what is seen for LBGs, possibly
indicating star-formation driven outflows from the host galaxies. There seems
to be a trend between the Lya EW and the optical to X-ray spectral index of the
afterglow (beta_OX), hinting that dust plays a role in the observed strength
and even presence of Lya emission. [ABRIDGED]Comment: ApJ accepted (v2: minor changes in the Subject headings and reference
list
The Highly Energetic Expansion of SN2010bh Associated with GRB 100316D
We present the spectroscopic and photometric evolution of the nearby (z =
0.059) spectroscopically confirmed type Ic supernova, SN 2010bh, associated
with the soft, long-duration gamma-ray burst (X-ray flash) GRB 100316D.
Intensive follow-up observations of SN 2010bh were performed at the ESO Very
Large Telescope (VLT) using the X-shooter and FORS2 instruments. Owing to the
detailed temporal coverage and the extended wavelength range (3000--24800 A),
we obtained an unprecedentedly rich spectral sequence among the hypernovae,
making SN 2010bh one of the best studied representatives of this SN class. We
find that SN 2010bh has a more rapid rise to maximum brightness (8.0 +/- 1.0
rest-frame days) and a fainter absolute peak luminosity (L_bol~3e42 erg/s) than
previously observed SN events associated with GRBs. Our estimate of the ejected
(56)Ni mass is 0.12 +/- 0.02 Msun. From the broad spectral features we measure
expansion velocities up to 47,000 km/s, higher than those of SNe 1998bw (GRB
980425) and 2006aj (GRB 060218). Helium absorption lines He I lambda5876 and He
I 1.083 microm, blueshifted by ~20,000--30,000 km/s and ~28,000--38,000 km/s,
respectively, may be present in the optical spectra. However, the lack of
coverage of the He I 2.058 microm line prevents us from confirming such
identifications. The nebular spectrum, taken at ~186 days after the explosion,
shows a broad but faint [O I] emission at 6340 A. The light-curve shape and
photospheric expansion velocities of SN 2010bh suggest that we witnessed a
highly energetic explosion with a small ejected mass (E_k ~ 1e52 erg and M_ej ~
3 Msun). The observed properties of SN 2010bh further extend the heterogeneity
of the class of GRB supernovae.Comment: 37 pages and 12 figures (one-column pre-print format), accepted for
publication in Ap
Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution
Glacier bed overdeepenings are ubiquitous in glacier systems and likely exert significant influence on ice dynamics, subglacial hydrology, and ice stability. Understanding of overdeepening formation and evolution has been hampered by an absence of quantitative empirical studies of their location and morphology, with process insights having been drawn largely from theoretical or numerical studies. To address this shortcoming, we first map the distribution of potential overdeepenings beneath the Antarctic and Greenland ice sheets using a GIS-based algorithm that identifies closed-contours in the bed topography and then describe and analyse the characteristics and metrics of a subset of overdeepenings that pass further quality control criteria. Overdeepenings are found to be widespread, but are particularly associated with areas of topographically laterally constrained ice flow, notably near the ice sheet margins where outlet systems follow deeply incised troughs. Overdeepenings also occur in regions of topographically unconstrained ice flow (for example, beneath the Siple Coast ice streams and on the Greenland continental shelf). Metrics indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow in general enhances overdeepening depth. However, overdeepening depth is skewed towards shallow values – typically 200 to 300 m – indicating that the rate of deepening slows with overdeepening age. This is reflected in a decline in adverse slope steepness with increasing overdeepening planform size. Finally, overdeepening long-profiles are found to support headward quarrying as the primary factor in overdeepening development. These observations support proposed negative feedbacks related to hydrology and sediment transport that stabilise overdeepening growth through sedimentation on the adverse slope but permit continued overdeepening planform enlargement by processes of headward erosion
Influence of Dll4 via HIF-1α-VEGF Signaling on the Angiogenesis of Choroidal Neovascularization under Hypoxic Conditions
Choroidal neovascularization (CNV) is the common pathological basis of
irreversible visual impairment encountered in a variety of chorioretinal
diseases; the pathogenesis of its development is complicated and still
imperfectly understood. Recent studies indicated that delta-like ligand 4
(Dll4), one of the Notch family ligands might participate in the HIF-1α-VEGF
pathway to regulate CNV angiogenesis. But little is known about the influence
and potential mechanism of Dll4/Notch signals on CNV angiogenesis. Real-time
RT-PCR, Western blotting were used to analyze the expression alteration of Dll4,
VEGF and HIF-1α in hypoxic RF/6A cells. Immunofluorescence staining, a
laser-induced rat CNV model and intravitreal injection techniques were used to
confirm the relationships among these molecules in vitro and
in vivo. RPE-RF/6A cell co-culture systems were used to
investigate the effects of Dll4/Notch signals on CNV angiogenesis. We found that
the Dll4 was involved in hypoxia signaling in CNV angiogenesis. Results from the
co-culture system showed that the enhancement of Dll4 expression in RF/6A cells
led to the significantly faster proliferation and stronger tube forming ability,
but inhibited cells migration and invasion across a monolayer of RPE cells in
hypoxic environment, while siRNA-mediated Dll4 silencing caused the opposite
effects. Pharmacological disruption of Notch signaling using gamma-secretase
inhibitor (GSI) produced similar, but not identical effects, to that caused by
the Dll4 siRNA. In addition, the expression of several key molecules involved in
the angiogenesis of CNV was altered in RF/6A cells showing constitutively active
Dll4 expression. These results suggest that Dll4 play an important role in CNV
angiogenesis, which appears to be regulated by HIF-1α and VEGF during the
progression of CNV under hypoxic conditions. Targeting Dll4/Notch signaling may
facilitate further understanding of the mechanisms that underlie CNV
angiogenesis
Using dissolved H<sub>2</sub>O in rhyolitic glasses to estimate palaeo-ice thickness during a subglacial eruption at Bláhnúkur(Torfajökull, Iceland)
The last decade has seen the refinement of a technique for reconstructing palaeo-ice thicknesses based on using the retained H2O and CO2 content in glassy eruptive deposits to infer quenching pressures and therefore ice thicknesses. The method is here applied to Bláhnúkur, a subglacially erupted rhyolitic edifice in Iceland. A decrease in water content from ~0.7 wt.% at the base to ~0.3 wt.% at the top of the edifice suggests that the ice was 400 m thick at the time of the eruption. As Bláhnúkur rises 350 m above the surrounding terrain, this implies that the eruption occurred entirely within ice, which corroborates evidence obtained from earlier lithofacies studies. This paper presents the largest data set (40 samples) so far obtained for the retained volatile contents of deposits from a subglacial eruption. An important consequence is that it enables subtle but significant variations in water content to become evident. In particular, there are anomalous samples which are either water-rich (up to 1 wt.%) or water-poor (~0.2 wt.%), with the former being interpreted as forming intrusively within hyaloclastite and the latter representing batches of magma that were volatile-poor prior to eruption. The large data set also provides further insights into the strengths and weaknesses of using volatiles to infer palaeo-ice thicknesses and highlights many of the uncertainties involved. By using examples from Bláhnúkur, the quantitative use of this technique is evaluated. However, the relative pressure conditions which have shed light on Bláhnúkur’s eruption mechanisms and syn-eruptive glacier response show that, despite uncertainties in absolute values, the volatile approach can provide useful insight into the mechanisms of subglacial rhyolitic eruptions, which have never been observed
- …