108 research outputs found
Concise review: can stem cells be used to treat or model Alzheimer’s disease
Abstract Alzheimer disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States alone. AD patients suffer from progressive neurodegeneration that gradually impairs their memory, ability to learn, and carry out daily activities. Unfortunately, current therapies for AD are largely palliative and several promising drug candidates have failed in recent clinical trials. There is therefore an urgent need to improve our understanding of AD pathogenesis, create innovative and predictive models, and develop new and effective therapies. In this review we will discuss the potential of stem cells to aid in these challenging endeavors. Because of the widespread nature of AD pathology, cell replacement strategies have been viewed as an incredibly challenging and unlikely treatment approach. Yet, recent work shows that transplantation of neural stem cells (NSCs) can improve cognition, reduce neuronal loss, and enhance synaptic plasticity in animal models of AD. Interestingly, the mechanisms that mediate these effects appear to involve neuroprotection and trophic support rather than neuronal replacement. Stem cells may also offer a powerful new approach to model and study AD. Patient-derived induced pluriptotent stem cells (iPSCs), for example, may help to advance our understanding of disease mechanisms. Likewise, studies of human embryonic and neural stem cells are helping to decipher the normal functions of AD-related genes; revealing intriguing roles in neural development
Recommended from our members
Organelle phenotyping and multi‐dimensional microscopy identify C1q as a novel regulator of microglial function
Microglia, the immune cells of the central nervous system, are dynamic and heterogenous cells. While single cell RNA sequencing has become the conventional methodology for evaluating microglial state, transcriptomics do not provide insight into functional changes, identifying a critical gap in the field. Here, we propose a novel organelle phenotyping approach in which we treat live human induced pluripotent stem cell-derived microglia (iMGL) with organelle dyes staining mitochondria, lipids, lysosomes and acquire data by live-cell spectral microscopy. Dimensionality reduction techniques and unbiased cluster identification allow for recognition of microglial subpopulations with single-cell resolution based on organelle function. We validated this methodology using lipopolysaccharide and IL-10 treatment to polarize iMGL to an "inflammatory" and "anti-inflammatory" state, respectively, and then applied it to identify a novel regulator of iMGL function, complement protein C1q. While C1q is traditionally known as the initiator of the complement cascade, here we use organelle phenotyping to identify a role for C1q in regulating iMGL polarization via fatty acid storage and mitochondria membrane potential. Follow up evaluation of microglia using traditional read outs of activation state confirm that C1q drives an increase in microglia pro-inflammatory gene production and migration, while suppressing microglial proliferation. These data together validate the use of a novel organelle phenotyping approach and enable better mechanistic investigation of molecular regulators of microglial state
Recommended from our members
Testing a MultiTEP-based combination vaccine to reduce Aβ and tau pathology in Tau22/5xFAD bigenic mice.
BackgroundAlzheimer disease (AD) is characterized by the accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau, which together lead to neurodegeneration and cognitive decline. Current therapeutic approaches have primarily aimed to reduce pathological aggregates of either Aβ or tau, yet phase 3 clinical trials of these approaches have thus far failed to delay disease progression in humans. Strong preclinical evidence indicates that these two abnormally aggregated proteins interact synergistically to drive downstream neurodegeneration. Therefore, combinatorial therapies that concurrently target both Aβ and tau might be needed for effective disease modification.MethodsA combinatorial vaccination approach was designed to concurrently target both Aβ and tau pathologies. Tau22/5xFAD (T5x) bigenic mice that develop both pathological Aβ and tau aggregates were injected intramuscularly with a mixture of two MultiTEP epitope vaccines: AV-1959R and AV-1980R, targeting Aβ and tau, respectively, and formulated in AdvaxCpG, a potent polysaccharide adjuvant. Antibody responses of vaccinated animals were measured by ELISA, and neuropathological changes were determined in brain homogenates of vaccinated and control mice using ELISA and Meso Scale Discovery (MSD) multiplex assays.ResultsT5x mice immunized with a mixture of Aβ- and tau-targeting vaccines generated high Aβ- and tau-specific antibody titers that recognized senile plaques and neurofibrillary tangles/neuropil threads in human AD brain sections. Production of these antibodies in turn led to significant reductions in the levels of soluble and insoluble total tau, and hyperphosphorylated tau as well as insoluble Aβ42, within the brains of bigenic T5x mice.ConclusionsAV-1959R and AV-1980R formulated with AdvaxCpG adjuvant are immunogenic and therapeutically potent vaccines that in combination can effectively reduce both of the hallmark pathologies of AD in bigenic mice. Taken together, these findings warrant further development of this vaccine technology for ultimate testing in human AD
Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation
Foreign body response (FBR) to biomaterials compromises the function of implants and leads to medical complications. Here, we report a hybrid alginate microcapsule (AlgXO) that attenuated the immune response after implantation, through releasing exosomes derived from human Umbilical Cord Mesenchymal Stem Cells (XOs). Upon release, XOs suppress the local immune microenvironment, where xenotransplantation of rat islets encapsulated in AlgXO led to >170 days euglycemia in immunocompetent mouse model of Type 1 Diabetes. In vitro analyses revealed that XOs suppressed the proliferation of CD3/CD28 activated splenocytes and CD3+ T cells. Comparing suppressive potency of XOs in purified CD3+ T cells versus splenocytes, we found XOs more profoundly suppressed T cells in the splenocytes co-culture, where a heterogenous cell population is present. XOs also suppressed CD3/CD28 activated human peripheral blood mononuclear cells (PBMCs) and reduced their cytokine secretion including IL-2, IL-6, IL-12p70, IL-22, and TNFα. We further demonstrate that XOs mechanism of action is likely mediated via myeloid cells and XOs suppress both murine and human macrophages partly by interfering with NFκB pathway. We propose that through controlled release of XOs, AlgXO provide a promising new platform that could alleviate the local immune response to implantable biomaterials
Therapeutic potential of human microglial transplantation in a chimeric model of CSF1R-related leukoencephalopathy
Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders
Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models
INTRODUCTION: Short-term neural stem cell (NSC) transplantation improves cognition in Alzheimer’s disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches. METHODS: To begin to examine this question we genetically-modified NSCs to stably express and secrete the Aβ-degrading enzyme, neprilysin (sNEP). Next, we studied the effects of sNEP expression in vitro by quantifying Aβ-degrading activity, NSC multipotency markers, and Aβ-induced toxicity. To determine whether sNEP-expressing NSCs can also modulate AD-pathogenesis in vivo, control-modified and sNEP-NSCs were transplanted unilaterally into the hippocampus of two independent and well characterized transgenic models of AD: 3xTg-AD and Thy1-APP mice. After three months, stem cell engraftment, neprilysin expression, and AD pathology were examined. RESULTS: Our findings reveal that stem cell-mediated delivery of NEP provides marked and significant reductions in Aβ pathology and increases synaptic density in both 3xTg-AD and Thy1-APP transgenic mice. Remarkably, Aβ plaque loads are reduced not only in the hippocampus and subiculum adjacent to engrafted NSCs, but also within the amygdala and medial septum, areas that receive afferent projections from the engrafted region. CONCLUSIONS: Taken together, our data suggest that genetically-modified NSCs could provide a powerful combinatorial approach to not only enhance synaptic plasticity but to also target and modify underlying Alzheimer’s disease pathology
Recommended from our members
Microglia promote anti-tumour immunity and suppress breast cancer brain metastasis
Breast cancer brain metastasis (BCBM) is a lethal disease with no effective treatments. Prior work has shown that brain cancers and metastases are densely infiltrated with anti-inflammatory, protumourigenic tumour-associated macrophages, but the role of brain-resident microglia remains controversial because they are challenging to discriminate from other tumour-associated macrophages. Using single-cell RNA sequencing, genetic and humanized mouse models, we specifically identify microglia and find that they play a distinct pro-inflammatory and tumour-suppressive role in BCBM. Animals lacking microglia show increased metastasis, decreased survival and reduced natural killer and T cell responses, showing that microglia are critical to promote anti-tumour immunity to suppress BCBM. We find that the pro-inflammatory response is conserved in human microglia, and markers of their response are associated with better prognosis in patients with BCBM. These findings establish an important role for microglia in anti-tumour immunity and highlight them as a potential immunotherapy target for brain metastasis
Microglia protect against age-associated brain pathologies
Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1r^ΔFIRE/ΔFIRE mouse model. In juvenile Csf1r^ΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1r^ΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1r^ΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.ISSN:0896-6273ISSN:1097-419
- …