157 research outputs found

    Trace element thermometry of garnet-clinopyroxene pairs

    Get PDF
    We present major and trace element data on coexisting garnet and clinopyroxene from experiments carried out between 1.3 and 10 GPa and 970 and 1400 °C. We demonstrate that the lattice strain model, which was developed for applications to mineral-melt partitioning, can be adapted to garnet-clinopyroxene partitioning. Using new and published experimental data we develop a geothermometer for coexisting garnet and clinopyroxene using the concentration of rare earth elements (REE). The thermometer, which is based on an extension of the lattice strain model, exploits the tendency of minerals at elevated temperatures to be less discriminating against cations that are too large or too small for lattice sites. The extent of discrimination against misfit cations is also related to the apparent elasticity of the lattice site on which substitution occurs, in this case the greater stiffness of the dodecahedral X-site in garnet compared with the eightfold M2-site in clinopyroxene. We demonstrate that the ratio of REE in clinopyroxene to that in coexisting garnet is particularly sensitive to temperature. We present a method whereby knowledge of the major and REE chemistry of garnet and clinopyroxene can be used to solve for the equilibrium temperature. The method is applicable to any scenario in which the two minerals are in equilibrium, both above and below the solidus, and where the mole fraction of grossular in garnet is less than 0.4. Our method, which can be widely applied to both peridotitic and eclogitic paragenesis with particular potential for diamond exploration studies, has the advantage over commonly used Fe-Mg exchange thermometers in having a higher closure temperature because of slow interdiffusion of REE. The uncertainty in the calculated temperatures, based on the experimental data set, is less than ±80 °C.J.P. is grateful to Rio Tinto for a Ph.D. studentship at the University of Bristol, BGI and Dave Dobson for access to their multi-anvil apparatus and Richard Hinton for assistance with the ion-microprobe analyses. J.B. acknowledges funding from ERC Advanced Grant CRITMAG and a Royal Society Wolfson Research Merit Award. This work has benefitted from discussion with Chris Smith, Russell Sweeney, John Schumacher, Susanne Skora, and Wim van Westrenen. We thank Yan Liang and an anonymous reviewer for thoughtful reviews of our manuscript

    The 2011 eruption of Nabro volcano, Eritrea: perspectives on magmatic processes from melt inclusions.

    Get PDF
    The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar

    The temporal evolution of chemical and physical properties of magmatic systems

    Get PDF
    Exactly 100 years ago the great Canadian-born petrologist N. L. Bowen published two seminal works on the chemical differentiation of magmas in which he posed the basis for a physico-chemical understanding of the fractionation of crystals from melts in molten rock. A subsequent century of research and technological advances has enhanced our understanding of the physics and chemistry of magmatic systems and their temporal evolution. The image of sub-volcanic magmatic systems has evolved greatly in that time, from a simple ‘boiling vat’ concept of molten rock in which bubbles, crystals and melt separate gravitationally to a recognition that magma vats are relatively rare and that most magmatic systems spend much of their lifetime in a partially molten, or mushy, state. Real magmatic systems appear to be organized into a series of storage regions periodically connected by feeding structures transferring magma (and heat) at different fluxes. Magma fluxes between the different portions of this plumbing system, and the variation of the chemical and physical properties of magma as it rises through the crust, exert essential controls on the eruptive modalities of volcanoes and the geochemistry of their products. This book presents a collection of contributions that use petrology, geochemistry, geochronology and numerical modelling to identify the processes operating at different depths within magmatic systems and to characterize the fluxes of magma between them

    Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach

    Get PDF
    Plagioclase-melt partition coefficients (D) for 34 trace elements at natural concentration levels were determined experimentally in a natural MORB composition at atmospheric pressure using thin Pt-wire loops. Experiments were carried out at three temperatures (1,220, 1,200, and 1,180°C), and at three different oxygen fugacities (fO2 = IW, QFM, air) in order to assess the effect of fO2 on the partitioning of elements with multiple valence (Fe, Eu, Cr). Run products were analyzed by laser-ablation ICP-MS. Most trace element Ds increase slightly as temperature decreases, except for D Zr, D Fe, D Eu and D Cr that vary systematically with fO2. Applying the Lattice Strain Model to our data suggests the presence of Fe2+ entirely in the octahedral site at highly to moderate reducing conditions, while Fe3+ was assigned wholly to the tetrahedral site of the plagioclase structure. Furthermore, we provide a new quantitative framework for understanding the partitioning behaviour of Eu, which occurs as both 2+ and 3+ cations, depending on fO2and confirm the greater compatibility of Eu2+, which has an ionic radius similar to Sr, relative to Eu3+ in plagioclase and the higher Eu2+/ Eu3+ under reducing conditions. For petrogenetic basaltic processes, a combined fractionation of Eu2+-Sr and Fe-Mg by plagioclase has considerable potential as an oxybarometer for natural magmatic rock
    corecore