1,522 research outputs found

    Sigurd Lewerentz: Church of St Peter, Klippan, 1963–66

    Get PDF
    This modest building questions basic assumptions about processes and finishes, about the nature of brickwork and the detailing of window frames – and provides a powerful space for worship

    Working with the given

    Get PDF
    In this essay the author suggests that although the resulting architectural style may be ambiguous, a dialogue with an existing place can be creative, rewarding and appropriate

    New meanings from old buildings

    Get PDF
    The three modest house projects described here are by three fellow travellers — the two authors and David Lea — interested in the Organic side of Modernism. Conversational partners who have worked together in various capacities over many years, they share a common conviction about ‘working with the given

    SS433's accretion disc, wind and jets: before, during and after a major flare

    Full text link
    The Galactic microquasar SS433 occasionally exhibits a major flare when the intensity of its emission increases significantly and rapidly. We present an analysis of high-resolution, almost-nightly optical spectra obtained before, during and after a major flare, whose complex emission lines are deconstructed into single gaussians and demonstrate the different modes of mass loss in the SS433 system. During our monitoring, an initial period of quiescence was followed by increased activity which culminated in a radio flare. In the transition period the accretion disc of SS433 became visible in H-alpha and HeI emission lines and remained so until the observations were terminated; the line-of-sight velocity of the centre of the disc lines during this time behaved as though the binary orbit has significant eccentricity rather than being circular, consistent with three recent lines of evidence. After the accretion disc appeared its rotation speed increased steadily from 500 to 700 km/s. The launch speed of the jets first decreased then suddenly increased. At the same time as the jet launch speed increased, the wind from the accretion disc doubled in speed. Two days afterwards, the radio flux exhibited a flare. These data suggest that a massive ejection of material from the companion star loaded the accretion disc and the system responded with mass loss via different modes that together comprise the flare phenomena. We find that archival data reveal similar behaviour, in that when the measured jet launch speed exceeds 0.29c this is invariably simultaneous with, or a few days before, a radio flare. Thus we surmise that a major flare consists of the overloading of the accretion disc, resulting in the speeding up of the H-alpha rotation disc lines, followed by enhanced mass loss not just via its famous jets at higher-than-usual speeds but also directly from its accretion disc's wind.Comment: Accepted by MNRA

    Structure and Magnetic Fields in the Precessing Jet System SS 433 II. Intrinsic Brightness of the Jets

    Full text link
    Deep Very Large Array imaging of the binary X-ray source SS 433, sometimes classified as a microquasar, has been used to study the intrinsic brightness distribution and evolution of its radio jets. The intrinsic brightness of the jets as a function of age at emission of the jet material tau is recovered by removal of the Doppler boosting and projection effects. We find that intrinsically the two jets are remarkably similar when compared for equal tau, and that they are best described by Doppler boosting of the form D^{2+alpha}, as expected for continuous jets. The intrinsic brightnesses of the jets as functions of age behave in complex ways. In the age range 60 < tau < 150 days, the jet decays are best represented by exponential functions of tau, but linear or power law functions are not statistically excluded. This is followed by a region out to tau ~ 250 days during which the intrinsic brightness is essentially constant. At later times the jet decay can be fit roughly as exponential or power law functions of tau.Comment: 30 Pages, 11 Figures, Submitted to Ap

    Multiwavelength study of Cygnus A II. X-ray inverse-Compton emission from a relic counterjet and implications for jet duty-cycles

    Full text link
    The duty-cycle of powerful radio galaxies and quasars such as the prototype Cygnus A is poorly understood. X-ray observations of inverse-Compton scattered Cosmic Microwave Background (ICCMB) photons probe lower Lorentz-factor particles than radio observations of synchrotron emission. Comparative studies of the nearer and further lobes, separated by many 10s of kpc and thus 10s of thousands of years in light-travel time, yield additional temporal resolution in studies of the lifecycles. We have co-added all archival Chandra ACIS-I data and present a deep 200 ks image of Cygnus A. This deep image reveals the presence of X-ray emission from a counterjet i.e. a jet receding from Earth and related to a previous episode of jet activity. The non-thermal X-ray emission, we interpret as ICCMB radiation. There is an absence of any discernible X-ray emission associated with a jet flowing towards Earth. We conclude that: (1) The emission from a relic jet, indicates a previous episode of jet activity, that took place earlier than the current jet activity appearing as synchrotron radio emission. (2) The presence of X-ray emission from a relic counterjet of Cygnus A and the absence of X-ray emission associated with any relic approaching jet constrains the timescale between successive episodes of jet activity to ~10^6 years. (3) Transverse expansion of the jet causes expansion losses which shifts the energy distribution to lower energies. (4) Assuming the electrons cooled due to adiabatic expansion, the required magnetic field strength is substantially smaller than the equipartition magnetic field strength. (5) A high minimum Lorentz factor for the distribution of relativistic particles in the current jet, of a few 10^3, is ejected from the central nucleus of this active galaxy. Abridged.Comment: Accepted for publication by MNRAS, 8 pages Dates in Table 1 correcte

    Jet evolution, flux ratios and light-travel time effects

    Full text link
    Studies of the knotty jets in both quasars and microquasars frequently make use of the ratio of the intensities of corresponding knots on opposite sides of the nucleus in order to infer the product of the intrinsic jet speed (beta) and the cosine of the inclination angle of the jet-axis (cos{theta}), via the formalism I_{a}/I_{r} = ((1+beta cos{theta})/(1-beta cos{theta}))^{3+alpha}, where alpha relates the intensity I_{nu} as a function of frequency nu as I_{nu} propto nu^{-alpha}. Where beta cos{theta} is determined independently, the intensity ratio of a given pair of jet to counter-jet knots is over-predicted by the above formalism compared with the intensity ratio actually measured from radio images. As an example in the case of Cygnus X-3 the original formalism predicts an intensity ratio of about 185, whereas the observed intensity ratio at one single epoch is about 3. Mirabel and Rodriguez (1999) have refined the original formalism, and suggested measuring the intensity ratio of knots when they are at equal angular separations from the nucleus. This method is only applicable where there is sufficient time-sampling with sufficient physical resolution to interpolate the intensities of the knots at equal distances from the nucleus, and can therefore be difficult to apply to microquasars and is impossible to apply to quasars. Accounting for both the light-travel time between the knots and the simple evolution of the knots themselves reconciles this over-prediction and renders the original formalism obsolete.Comment: 5 pages, no figures, to be published in ApJ Letter

    Exploring the Nature of Weak Chandra Sources near the Galactic Centre

    Get PDF
    We present results from the first near-IR imaging of the weak X-ray sources discovered in the Chandra/ACIS-I survey (Wang et al. 2002) towards the Galactic Centre (GC). These ~800 discrete sources, which contribute significantly to the GC X-ray emission, represent an important and previously unknown population within the Galaxy. From our VLT observations we will identify likely IR counterparts to a sample of the hardest sources, which are most likely X-ray binaries. With these data we can place constraints on the nature of the discrete weak X-ray source population of the GC.Comment: In Proc. of ``Interacting Binaries: Accretion, Evolution, and Outcomes'', eds. L. A. Antonelli et al., AIP, Cefalu, Sicily, 200

    When Microquasar Jets and Supernova Collide: Hydrodynamically Simulating the SS433-W50 Interaction

    Full text link
    We present investigations of the interaction between the relativistic, precessing jets of the microquasar SS433 with the surrounding, expanding Supernova Remnant (SNR) shell W50, and the consequent evolution in the inhomogeneous Interstellar Medium (ISM). We model their evolution using the hydrodynamic FLASH code, which uses adaptive mesh refinement. We show that the peculiar morphology of the entire nebula can be reproduced to a good approximation, due to the combined effects of: (i) the evolution of the SNR shell from the free-expansion phase through the Sedov blast wave in an exponential density profile from the Milky Way disc, and (ii) the subsequent interaction of the relativistic, precessing jets of SS 433. Our simulations reveal: (1) Independent measurement of the Galaxy scale-height and density local to SS433 (as n_0 = 0.2 cm^{-3}, Z_d = 40 pc), with this scale-height being in excellent agreement with the work of Dehnen & Binney. (2) A new mechanism for hydrodynamic refocusing of conical jets. (3) The current jet precession characteristics do not simply extrapolate back to produce the lobes of W50 but a history of episodic jet activity having at least 3 different outbursts with different precession characteristics would be sufficient to produce the W50 nebula. A history of intermittent episodes of jet activity from SS433 is also suggested in a kinematic study of W50 detailed in a companion paper (Goodall et al, MNRAS submitted). (4) An estimate of the age of W50, and equivalently the age of SS433's black hole created during the supernova explosion, in the range of 17,000 - 21,000 years.Comment: Accepted to MNRAS for publication. 23 pages, 11 figures, 5 Tables. Website associated with manuscript: http://www-astro.physics.ox.ac.uk/~ptg/RESEARCH/research.htm
    • …
    corecore