173 research outputs found

    Enzymatic Characterization of In Vitro Activity of RNA Methyltransferase PCIF1 on DNA

    Get PDF
    PCIF1 and FTO are a pair of human mRNA cap-specific modification enzymes that have opposing activities. PCIF1 adds a methyl group to the N6-position of 2′O-methyladenosine (Am), generating N6, 2′O-dimethyladenosine (m6Am), when Am is the cap-proximal nucleotide. FTO removes the N6-methyl group from m6Am. In addition, FTO has a demethylase activity on a broad spectrum of various RNA substrates, as well as on DNA N6-methyldeoxyadenosine (m6dA). While the existence of m6dA in mammalian DNA remains controversial, we show here that PCIF1 has significant methylation activity on single stranded DNA deoxyadenosine, double stranded RNA/DNA hybrids, and double stranded DNA, though with lower catalytic efficiency than that on its preferred RNA substrate. PCIF1 has activities in the order ssRNA \u3e RNA/DNA hybrid \u3e ssDNA \u3e dsDNA. We discuss the implications of PCIF1 generation, and FTO removal, of DNA adenine methylation

    Disentangling root responses to climate change in a semiarid grassland

    Get PDF
    Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland

    Disentangling root responses to climate change in a semiarid grassland

    Get PDF
    Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland

    Enzymatic Characterization of mRNA Cap Adenosine-N6 Methyltransferase PCIF1 Activity on Uncapped RNAs

    Get PDF
    The phosphorylated RNA polymerase II CTD interacting factor 1 (PCIF1) is a methyltransferase that adds a methyl group to the N6-position of 2′O-methyladenosine (Am), generating N6, 2′O-dimethyladenosine (m6Am) when Am is the cap-proximal nucleotide. In addition, PCIF1 has ancillary methylation activities on internal adenosines (both A and Am), although with much lower catalytic efficiency relative to that of its preferred cap substrate. The PCIF1 preference for 2′O-methylated Am over unmodified A nucleosides is due mainly to increased binding affinity for Am. Importantly, it was recently reported that PCIF1 can methylate viral RNA. Although some viral RNA can be translated in the absence of a cap, it is unclear what roles PCIF1 modifications may play in the functionality of viral RNAs. Here we show, using in vitro assays of binding and methyltransfer, that PCIF1 binds an uncapped 5′-Am oligonucleotide with approximately the same affinity as that of a cap analog (KM = 0.4 versus 0.3 μM). In addition, PCIF1 methylates the uncapped 5′-Am with activity decreased by only fivefold to sixfold compared with its preferred capped substrate. We finally discuss the relationship between PCIF1-catalyzed RNA methylation, shown here to have broader substrate specificity than previously appreciated, and that of the RNA demethylase fat mass and obesity-associated protein (FTO), which demonstrates PCIF1-opposing activities on capped RNAs

    Comparative Study of Adenosine Analogs as Inhibitors of Protein Arginine Methyltransferases and a Clostridioides difficile- Specific DNA Adenine Methyltransferase

    Get PDF
    S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host–pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 μM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA–DNA–inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection

    Systematic Design of Adenosine Analogs as Inhibitors of a Clostridioides difficile- Specific DNA Adenine Methyltransferase Required for Normal Sporulation and Persistence

    Get PDF
    Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 μM and KD ∼ 0.2 μM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors

    Collaborative Privacy-Preserving Analysis of Oncological Data using Multiparty Homomorphic Encryption

    Get PDF
    Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical data sets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their data sets, and control over the usage of their data. Fully homomorphic encryption (FHE) is a cryptographic capability that can address these issues by enabling computation on encrypted data without intermediate decryptions, so the analytics results are obtained without revealing the raw data. This work presents a toolset for collaborative privacy-preserving analysis of oncological data using multiparty FHE. Our toolset supports survival analysis, logistic regression training, and several common descriptive statistics. We demonstrate using oncological data sets that the toolset achieves high accuracy and practical performance, which scales well to larger data sets. As part of this work, we propose a novel cryptographic protocol for interactive bootstrapping in multiparty FHE, which is of independent interest. The toolset we develop is general-purpose and can be applied to other collaborative medical and healthcare application domains

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore