212 research outputs found

    Liver and brain differential expression of one-carbon metabolism genes during ontogenesis

    Get PDF
    One-carbon metabolism (1C metabolism) is of paramount importance for cell metabolism and mammalian development. It is involved in the synthesis or modification of a wide variety of compounds such as proteins, lipids, purines, nucleic acids and neurotransmitters. We describe here the evolution of expression of genes related to 1C metabolism during liver and brain ontogeny in mouse. The level of expression of 30 genes involved in 1C metabolism was quantified by RT-qPCR in liver and brain tissues of OF1 mice at E9, E11, E13, E15, E17, P0, P3, P5, P10, P15 developmental stages and in adults. In the liver, hierarchical clustering of the gene expression patterns revealed five distinct clades of genes with a first bifurcating hierarchy distinguishing two main developmental stages before and after E15. In the brain most of the 1C metabolism genes are expressed but at a lower levels. The gene expression of enzymes involved in 1C metabolism show dramatic changes during development that are tissue specific. mRNA expression patterns of all major genes involved in 1C metabolism in liver and brain provide clues about the methylation demand and methylation pathways during embryonic development

    Cystathionine beta synthase deficiency and brain edema associated with methionine excess under betaine supplementation: Four new cases and a review of the evidence.

    Get PDF
    CBS deficient individuals undergoing betaine supplementation without sufficient dietary methionine restriction can develop severe hypermethioninemia and brain edema. Brain edema has also been observed in individuals with severe hypermethioninemia without concomitant betaine supplementation. We systematically evaluated reports from 11 published and 4 unpublished patients with CBS deficiency and from additional four cases of encephalopathy in association with elevated methionine. We conclude that, while betaine supplementation does greatly exacerbate methionine accumulation, the primary agent causing brain edema is methionine rather than betaine. Clinical signs of increased intracranial pressure have not been seen in patients with plasma methionine levels below 559 μmol/L but occurred in one patient whose levels did not knowingly exceed 972 μmol/L at the time of manifestation. While levels below 500 μmol/L can be deemed safe it appears that brain edema can develop with plasma methionine levels close to 1000 μmol/L. Patients with CBS deficiency on betaine supplementation need to be regularly monitored for concordance with their dietary plan and for plasma methionine concentrations. Recurrent methionine levels above 500 μmol/L should alert clinicians to check for clinical signs and symptoms of brain edema and review dietary methionine intake. Levels approaching 1000 μmol/L do increase the risk of complications and levels exceeding 1000 μmol/L, despite best dietetic efforts, should be acutely addressed by reducing the prescribed betaine dose

    The effect of diet-induced weight loss on circulating homocysteine levels in people with obesity and type 2 diabetes

    Get PDF
    Background/aims: Having type 2 diabetes (T2D) in combination with being overweight results in an additional increase in cardiovascular disease (CVD) risk. In addition, T2D and obesity are associated with increased levels of total homocysteine (tHcy), possibly contributing to the CVD risk. Weight loss dieting has positive effects on several CVD risk factors, but whether it affects tHcy remains unclear. Therefore, the aim of this study was to determine the effect of a calorie restricted diet on tHcy in overweight people with T2D. Methods:In this post-hoc analysis of the POWER study, adults with T2D and a BMI greater than 27 kg/m² were included from the outpatient diabetes clinic of the Erasmus Medical Center, Rotterdam. The patients were subjected to a very low-calorie diet with fortified meal replacements for 20 weeks. Before and after this intervention, blood samples were collected to measure tHcy and other CVD risk factors like glycaemic and lipid parameters. Results: 161 overweight participants with T2D were included, with a mean age of 54 years (range 26–74), mean weight of 104.6 ± 19.9 kg and mean HbA1c of 62.7 ± 14.3 mmol/mol. At baseline, men displayed higher tHcy than women, and tHcy level was positively correlated with body weight and triglyceride levels, while it was negatively correlated with renal function and HDL cholesterol. During the intervention, bodyweight was reduced by a mean of 9.7% (from 104.6 ± 19.9 to 94.5 ± 18.1 kg p &lt; 0.001), and all measured glycaemic and lipid blood parameters improved significantly. However, tHcy remained unchanged (from 12.1 ± 4.1 to 12.1 ± 4.2 umol/L, p = 0.880). The change in tHcy during the intervention was negatively associated with the change in weight and BMI (p = 0.01 and p = 0.008, respectively). People who lost &lt; 10 kg (n = 92) had a mean tHcy change of -0.47 umol/L, while people who lost more than ≥ 10 kg (n = 69) had a mean tHcy change of 0.60 umol/L (p = 0.021). Conclusion: In conclusion, our data show that a calorie restricted diet does not affect tHcy in people with T2D and obesity, despite the use of meal replacements fortified with folic acid and vitamin B12. Our data showed a negative correlation between change in tHcy levels and weight loss, suggesting that people who lost more weight (&gt; 10 kg) showed an increase in tHcy. Future studies should explore the potential increase in tHcy induced by weight loss dieting and target the question if tHcy reduction strategies during weight loss could be clinically beneficial.</p

    Determinants of the essential one-carbon metabolism metabolites, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine and folate, in cerebrospinal fluid

    Get PDF
    Background: Disturbances in the levels of one-carbon (1C) metabolism metabolites have been associated with a wide variety of neuropsychiatric diseases. Cerebrospinal fluid (CSF) levels of homocysteine (Hcy) and the other 1C metabolites, nor their interrelatedness and putative determinants, have been studied extensively in a healthy population. Methods: Plasma and CSF samples from 100 individuals free from neuropsychiatric diseases were analyzed (55 male, 45 female; age 50±17 years). In blood, we measured plasma Hcy, serum folate and serum vitamin B12. In CSF, we measured total Hcy, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and 5-methyltetrahydrofolate (5-methylTHF). Highly selective analytical methods like liquid chromatography combined with either mass spectrometry or fluorescence detection were used. Results: CSF Hcy was inversely correlated with CSF 5-methylTHF and positively with plasma Hcy, independent of serum folate status. CSF SAH correlated with age, lower CSF 5-methylTHF and higher CSF Hcy. CSF 5-methylTHF showed independent negative correlations with age and positive correlations with serum folate. CSF SAM did not correlate with any of the 1C metabolites. Conclusions: Aging is characterized by a reduction in CSF 5-methylTHF levels and increased CSF levels of the potentially neurotoxic transmethylation inhibitor SAH. CSF 5-methylTHF, which is itself determined in part by systemic folate status, is a powerful independent determinant of CSF levels of Hcy and SA

    No Effect of Folic Acid Supplementation on Global DNA Methylation in Men and Women with Moderately Elevated Homocysteine

    Get PDF
    A global loss of cytosine methylation in DNA has been implicated in a wide range of diseases. There is growing evidence that modifications in DNA methylation can be brought about by altering the intake of methyl donors such as folate. We examined whether long-term daily supplementation with 0.8 mg of folic acid would increase global DNA methylation compared with placebo in individuals with elevated plasma homocysteine. We also investigated if these effects were modified by MTHFR C677T genotype. Two hundred sixteen participants out of 818 subjects who had participated in a randomized double-blind placebo-controlled trial were selected, pre-stratified on MTHFR C677T genotype and matched on age and smoking status. They were allocated to receive either folic acid (0.8 mg/d; n = 105) or placebo treatment (n = 111) for three years. Peripheral blood leukocyte DNA methylation and serum and erythrocyte folate were assessed. Global DNA methylation was measured using liquid chromatography-tandem mass spectrometry and expressed as a percentage of 5-methylcytosines versus the total number of cytosine. There was no difference in global DNA methylation between those randomized to folic acid and those in the placebo group (difference = 0.008, 95%CI = −0.05,0.07, P = 0.79). There was also no difference between treatment groups when we stratified for MTHFR C677T genotype (CC, n = 76; CT, n = 70; TT, n = 70), baseline erythrocyte folate status or baseline DNA methylation levels. In moderately hyperhomocysteinemic men and women, long-term folic acid supplementation does not increase global DNA methylation in peripheral blood leukocytes

    Ovarian Cyst Fluid of Serous Ovarian Tumors Contains Large Quantities of the Brain Amino Acid N-acetylaspartate

    Get PDF
    BACKGROUND: In humans, N-acetyl L-aspartate (NAA) has not been detected in other tissues than the brain. The physiological function of NAA is yet undefined. Recently, it has been suggested that NAA may function as a molecular water pump, responsible for the removal of large amounts of water from the human brain. Ovarian tumors typically present as large cystic masses with considerable fluid accumulation. METHODOLOGY AND PRINCIPAL FINDINGS: Using Gas Chromatography-Mass Spectrometry, we demonstrated that NAA was present in a high micromolar concentration in oCF of epithelial ovarian tumors (EOTs) of serous histology, sometimes in the same range as found in the extracellular space of the human brain. In contrast, oCF of EOTs with a mucinous, endometrioid and clear cell histological subtype contained a low micromolar concentration of NAA. Serous EOTs have a cellular differentiation pattern which resembles the lining of the fallopian tube and differs from the other histological subtypes. The NAA concentration in two samples of fluid accumulation in the fallopian tube (hydrosalpinx) was in the same ranges as NAA found in oCF of serous EOTs. The NAA concentration in oCF of patients with serous EOTs was mostly 10 to 50 fold higher than their normal serum NAA concentration, whereas in patients with other EOT subtypes, serum and cyst fluid NAA concentration was comparable. CONCLUSIONS AND SIGNIFICANCE: The high concentration of NAA in cyst fluid of serous EOTs and low serum concentrations of NAA in these patients, suggest a local production of NAA in serous EOTs. Our findings provide the first identification of NAA concentrations high enough to suggest local production outside the human brain. Our findings contribute to the ongoing research understanding the physiological function of NAA in the human body

    Glycine N-methyltransferase deficiency: A member of dysmethylating liver disorders?

    Get PDF
    Glycine N-methyltransferase deficiency is an inherited disorder of methionine metabolism, reported so far in only four patients and characterised by permanent hypermethioninemia. This disorder has been considered as probably benign because moderate hepatomegaly in two patients was the only obvious symptom and mild to moderate elevation of aminotransferases the only laboratory abnormality. Our experience with the current novel patient points out that this disease, due to very high hypermethioninemia, is not harmless and that there may be diagnostic pitfalls in interpretation of biochemical hallmarks of the disease. Since the first description of glycine N-methyltransferase deficiency, other disorders of this metabolic pathway affecting the liver have been reported pointing to dysmethylation as the common pathogenetic mechanism. Therefore, we suggest the whole group to be named dysmethylating liver diseases
    • …
    corecore