20 research outputs found

    Design and baseline characteristics of the ParkFit study, a randomized controlled trial evaluating the effectiveness of a multifaceted behavioral program to increase physical activity in Parkinson patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many patients with Parkinson's disease (PD) lead a sedentary lifestyle. Promotion of physical activities may beneficially affect the clinical presentation of PD, and perhaps even modify the course of PD. However, because of physical and cognitive impairments, patients with PD require specific support to increase their level of physical activity.</p> <p>Methods</p> <p>We developed the ParkFit Program: a PD-specific and multifaceted behavioral program to promote physical activity. The emphasis is on creating a behavioral change, using a combination of accepted behavioral motivation techniques. In addition, we designed a multicentre randomized clinical trial to investigate whether this ParkFit Program increases physical activity levels over two years in sedentary PD patients. We intended to include 700 sedentary patients. Primary endpoint is the time spent on physical activities per week, which will be measured every six months using an interview-based 7-day recall.</p> <p>Results</p> <p>In total 3453 PD patients were invited to participate. Ultimately, 586 patients - with a mean (SD) age of 64.1 (7.6) years and disease duration of 5.3 (4.5) years - entered the study. Study participants were younger, had a shorter disease duration and were less sedentary compared with eligible PD patients not willing to participate.</p> <p>Discussion</p> <p>The ParkFit trial is expected to yield important new evidence about behavioral interventions to promote physical activity in sedentary patients with PD. The results of the trial are expected in 2012.</p> <p>Trial registration</p> <p><url>http://clinicaltrials.gov</url> (nr NCT00748488).</p

    Opposite effects of Vaccinia and modified Vaccinia Ankaraon trained immunity

    No full text
    AbstractVaccines such as Vaccinia or BCG have non-specific effects conferring protection against other diseases than their targetinfection, which are likely partly mediated through induction of innate immune memory (trained immunity). MVA85A, arecombinant strain of modified Vaccinia Ankara (MVA), has been suggested as an alternative vaccine against tuberculosis, butits capacity to induce positive or negative non-specific immune effects has not been studied. This study assesseswhether Vacciniaand MVA are able to induce trained innate immunity in monocytes. Human primary monocytes were primed in an in vitro modelwith Vaccinia or MVA for 1 day, after which the stimulus was washed off and the cells were rechallenged with unrelatedmicrobial ligands after 1 week. Heterologous cytokine responses were assessed and the capacity of MVA to induce epigeneticchanges at the level of cytokine genes was investigated using chromatin immunoprecipitation and pharmacological inhibitors.Monocytes trained with Vaccinia showed significantly increased IL-6 and TNF-? production to stimulation with non-relatedstimuli, compared to non-trained monocytes. In contrast, monocytes primed with MVA showed significant decreased heterologousIL-6 and TNF-? responses, an effect which was abrogated by the addition of a histone methyltransferase inhibitor. Noeffects on H3K4me3 were observed after priming with MVA. It can be thus concluded that Vaccinia induces trained immunityin vitro, whereas MVA induces innate immune tolerance. This suggests the induction of trained immunity as an immunologicalmechanism involved in the non-specific effects of Vaccinia vaccination and points to a possible explanation for the lack of effectof MVA85A against tuberculosis.Keywords Trained immunity . Vaccinia . Modified Vaccinia Ankara . Heterologous effect

    In Vitro Experimental Model of Trained Innate Immunity in Human Primary Monocytes

    No full text
    Innate immune memory, or trained immunity, has recently been described to be an important property of cells of the innate immune system. Due to the increased interest in this important new field of immunological investigation, we sought to determine the optimal conditions for an in vitro experimental protocol of monocyte training using three of the most commonly used training stimuli from the literature: beta-glucan, the bacillus Calmette-Guerin (BCG) vaccine, and oxidized low-density lipoprotein (oxLDL). We investigated and optimized a protocol of monocyte trained immunity induced by an initial training period with beta-glucan, BCG, or oxLDL, followed by washing and resting of the cells and, thereafter, restimulation with secondary bacterial stimuli. The training and resting time intervals were varied to identify the optimal setting for the long-term induction of trained immunity. Trained immunity was assessed in terms of the secondary cytokine response, the production of reactive oxygen species, cell morphology, and induction of glycolysis. Monocytes primed with beta-glucan, BCG, and oxLDL showed increased pro-and antiinflammatory cytokine responses upon restimulation with nonrelated stimuli. Also, all three stimuli induced a switch to glycolysis (the Warburg effect). These effects were most pronounced when the training interval was 24 h and the resting time interval was 6 days. Training with BCG and oxLDL also led to the increased production of reactive oxygen species, whereas training with beta-glucan led to the decreased production of reactive oxygen species. We describe the optimal conditions for an in vitro experimental model with human primary monocytes for study of the induction of trained innate immunity by microbial and metabolic stimul

    Glomerular hematuria:an atypical presentation of anti-glomerular basement membrane nephritis

    Get PDF
    BACKGROUND: Urologic diseases can cause hematuria, but dysmorphic erythrocytes directs to a glomerular disease. The latter might occur isolated or in the presence of systemic complaints, proteinuria or kidney failure. These factors determine the differential diagnosis that ranges from an innocent IgA nephropathy to a fatal anti-glomerular basement membrane (GBM) nephritis.CASE: A 30-year old patient attended the outpatient clinic because of glomerular hematuria and normal kidney function with working diagnosis IgA nephropathy. Three months later he presented to the emergency department with a severe acute kidney injury duo to an anti-GBM nephritis. In retrospect, the anti-GBM titer was already high during the outpatient clinic phase, but due to the preserved kidney function, anti-GBM nephritis was not added to the differential diagnosis.CONCLUSION: Glomerular hematuria with a preserved kidney function could in a rare instance be caused by a subclinical anti-GBM nephritis. Follow-up of the kidney function and comprehensive laboratory testing - or even a kidney biopsy - could potentially lead to an early diagnosis of anti-GBM nephritis.</p

    Opposite effects of Vaccinia and modified Vaccinia Ankara on trained immunity

    No full text
    Contains fulltext : 202097.pdf (publisher's version ) (Closed access

    Association of genetic variations in ACE2, TIRAP and factor X with outcomes in COVID-19

    No full text
    BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can manifest with varying disease severity and mortality. Genetic predisposition influences the clinical course of infectious diseases. We investigated whether genetic polymorphisms in candidate genes ACE2, TIRAP, and factor X are associated with clinical outcomes in COVID-19. METHODS: We conducted a single-centre retrospective cohort study. All patients who visited the emergency department with SARS-CoV-2 infection proven by polymerase chain reaction were included. Single nucleotide polymorphisms in ACE2 (rs2285666), TIRAP (rs8177374) and factor X (rs3211783) were assessed. The outcomes were mortality, respiratory failure and venous thromboembolism. Respiratory failure was defined as the necessity of >5 litres/minute oxygen, high flow nasal oxygen suppletion or mechanical ventilation. RESULTS: Between March and April 2020, 116 patients (35% female, median age 65 [inter quartile range 55–75] years) were included and treated according to the then applicable guidelines. Sixteen patients (14%) died, 44 patients (38%) had respiratory failure of whom 23 required endotracheal intubation for mechanical ventilation, and 20 patients (17%) developed venous thromboembolism. The percentage of TIRAP polymorphism carriers in the survivor group was 28% as compared to 0% in the non-survivor group (p = 0.01, Bonferroni corrected p = 0.02). Genotype distribution of ACE2 and factor X did not differ between survivors and non-survivors. CONCLUSION: This study shows that carriage of TIRAP polymorphism rs8177374 could be associated with a significantly lower mortality in COVID-19. This TIRAP polymorphism may be an important predictor in the outcome of COVID-19

    BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial.

    No full text
    Acellular pertussis (aP) booster vaccines are central to pertussis immunization programs, although their effectiveness varies. The Bacille Calmette-Guérin (BCG) vaccine is a prototype inducer of trained immunity, which enhances immune responses to subsequent infections or vaccinations. While previous clinical studies have demonstrated that trained immunity can protect against heterologous infections, its effect on aP vaccines in humans is unknown. We conducted a clinical study in order to determine the immunological effects of trained immunity on pertussis vaccination. Healthy female volunteers were randomly assigned to either receive BCG followed by a booster dose of tetanus-diphteria-pertussis inactivated polio vaccine (Tdap-IPV) 3 months later (BCG-trained), BCG + Tdap-IPV concurrently, or Tdap-IPV followed by BCG 3 months later. Primary outcomes were pertussis-specific humoral, T- and B-cell responses and were quantified at baseline of Tdap-IPV vaccination and 2 weeks thereafter. As a secondary outcome in the BCG-trained cohort, ex vivo leukocyte responses were measured in response to unrelated stimuli before and after BCG vaccination. BCG vaccination 3 months prior to, but not concurrent with, Tdap-IPV improves pertussis-specific Th1-cell and humoral responses, and also increases total memory B cell responses. These responses were correlated with enhanced IL-6 and IL-1β production at the baseline of Tdap-IPV vaccination in the BCG-trained cohort. Our study demonstrates that prior BCG vaccination potentiates immune responses to pertussis vaccines and that biomarkers of trained immunity are the most reliable correlates of those responses
    corecore