9,822 research outputs found
Development of alkali metal peroxide and superoxide blown ceramic foams Final report, 22 Jun. 1965 - 15 Mar. 1966
Alkali metal peroxide and superoxide blown ceramic foam bodies for thermal insulatio
The Circumstellar Extinction of Planetary Nebulae
We analyze the dependence of circumstellar extinction on core mass for the
brightest planetary nebulae (PNe) in the Magellanic Clouds and M31. We show
that in all three galaxies, a statistically significant correlation exists
between the two quantities, such that high core mass objects have greater
extinction. We model this behavior, and show that the relation is a simple
consequence of the greater mass loss and faster evolution times of high mass
stars. The relation is important because it provides a natural explanation for
the invariance of the [O III] 5007 planetary nebula luminosity function (PNLF)
with population age: bright Population I PNe are extinguished below the cutoff
of the PNLF. It also explains the counter-intuitive observation that
intrinsically luminous Population I PNe often appear fainter than PNe from
older, low-mass progenitors.Comment: 12 pages, 2 figures, accepted for ApJ, April 10, 199
The evolutionary time scale of Sakurai's object: A test of convection theory?
Sakurai's object (V4334 Sgr) is a born again AGB star following a very late
thermal pulse. So far no stellar evolution models have been able to explain the
extremely fast evolution of this star, which has taken it from the pre-white
dwarf stage to its current appearance as a giant within only a few years. A
very high stellar mass can be ruled out as the cause of the fast evolution.
Instead the evolution time scale is reproduced in stellar models by making the
assumption that the efficiency for element mixing in the He-flash convection
zone during the very late thermal pulse is smaller than predicted by the
mixing-length theory. As a result the main energy generation from fast proton
capture occurs closer to the surface and the expansion to the giant state is
accelerated to a few years. Assuming a mass of V4334 Sgr of 0.604Msun -- which
is consistent with a distance of 4kpc -- a reduction of the mixing length
theory mixing efficiency by a factor of ~ 100 is required to match its
evolutionary time scale. This value decreases if V4334 Sgr has a smaller mass
and accordingly a smaller distance. However, the effect does not disappear for
the smallest possible masses. These findings may present a semi-empirical
constraint on the element mixing in convective zones of the stellar interior.Comment: 16 pages, 3 figures, ApJ Letter, in press; some additional
information as well as modifications as a result of the refereeing process,
improved layout of prev. Fig.1 (now Fig.1 and Fig.2
Newly developed foam ceramic body shows promise as thermal insulation material at 3000 deg F
Optimized zirconia foam ceramic body shows promise for use as a thermal insulation material. The insulating media displays low density and thermal conductivity, good thermal shock resistance, high melting point, and mechanical strength
On the Nature of the Peculiar Hot Star in the Young LMC Cluster NGC1818
The blue star reported in the field of the young LMC cluster NGC1818 by Elson
et al. (1998) has the wrong luminosity and radius to be a "luminous white
dwarf" member of the cluster. In addition, unless the effective temperature
quoted by the authors is a drastic underestimate, the luminosity is much too
low for it to be a cluster member in the post-AGB phase. Other possibilities,
including that of binary evolution, are briefly discussed. However, the
implication that the massive main sequence turnoff stars in this cluster can
produce white dwarfs (instead of neutron stars) from single-star evolution
needs to be reconsidered.Comment: 5 pages, no figures, Ap J Letters in pres
Dispersion-strengthened chromium alloy
Finely divided powder mixture produced by vapor deposition of CR on small ThO2 particles was hot pressed or pressure bonded. Resulting alloy has lower ductile-to-brittle transition temperature than pure chromium, and high strength and oxidation resistance at elevated temperatures, both in as-rolled condition and after annealing
3-D Photoionization Structure and Distances of Planetary Nebulae III. NGC 6781
Continuing our series of papers on the three-dimensional (3-D) structures of
and accurate distances to Planetary Nebulae (PNe), we present our study of the
planetary nebula NGC6781. For this object we construct a 3-D photoionization
model and, using the constraints provided by observational data from the
literature we determine the detailed 3-D structure of the nebula, the physical
parameters of the ionizing source and the first precise distance. The procedure
consists in simultaneously fitting all the observed emission line morphologies,
integrated intensities and the 2-D density map from the [SII] line ratios to
the parameters generated by the model, and in an iterative way obtain the best
fit for the central star parameters and the distance to NGC6781, obtaining
values of 950+-143pc and 385 Lsun for the distance and luminosity of the
central star respectively. Using theoretical evolutionary tracks of
intermediate and low mass stars, we derive the mass of the central star of
NGC6781 and its progenitor to be 0.60+-0.03 Msun and 1.5+-0.5 Msun
respectively.Comment: 16 pp, 6 figues, 2 tables, submitted to the Ap
Recommended from our members
Estimating Latent Processes on a Network From Indirect Measurements
In a communication network, point-to-point traffic volumes over time are critical for designing protocols that route information efficiently and for maintaining security, whether at the scale of an Internet service provider or within a corporation. While technically feasible, the direct measurement of point-to-point traffic imposes a heavy burden on network performance and is typically not implemented. Instead, indirect aggregate traffic volumes are routinely collected. We consider the problem of estimating point-to-point traffic volumes, , from aggregate traffic volumes, , given information about the network routing protocol encoded in a matrix A. This estimation task can be reformulated as finding the solutions to a sequence of ill-posed linear inverse problems, , since the number of origin-destination routes of interest is higher than the number of aggregate measurements available.
Here, we introduce a novel multilevel state-space model (SSM) of aggregate traffic volumes with realistic features. We implement a naïve strategy for estimating unobserved point-to-point traffic volumes from indirect measurements of aggregate traffic, based on particle filtering. We then develop a more efficient two-stage inference strategy that relies on model-based regularization: a simple model is used to calibrate regularization parameters that lead to efficient/scalable inference in the multilevel SSM. We apply our methods to corporate and academic networks, where we show that the proposed inference strategy outperforms existing approaches and scales to larger networks. We also design a simulation study to explore the factors that influence the performance. Our results suggest that model-based regularization may be an efficient strategy for inference in other complex multilevel models. Supplementary materials for this article are available online.Statistic
Spitzer/MIPS Imaging of NGC 650: Probing the History of Mass Loss on the Asymptotic Giant Branch
We present the far-infrared (IR) maps of a bipolar planetary nebula (PN), NGC
650, at 24, 70, and 160 micron taken with the Multiband Imaging Photometer for
Spitzer (MIPS) on-board the Spitzer Space Telescope. While the two-peak
emission structure seen in all MIPS bands suggests the presence of a near
edge-on dusty torus, the distinct emission structure between the 24 micron map
and the 70/160 micron maps indicates the presence of two distinct emission
components in the central torus. Based on the spatial correlation of these two
far-IR emission components with respect to various optical line emission, we
conclude that the 24 micron emission is largely due to the [O IV] line at 25.9
micron arising from highly ionized regions behind the ionization front, whereas
the 70 and 160 micron emission is due to dust continuum arising from
low-temperature dust in the remnant asymptotic giant branch (AGB) wind shell.
The far-IR nebula structure also suggests that the enhancement of mass loss at
the end of the AGB phase has occurred isotropically, but has ensued only in the
equatorial directions while ceasing in the polar directions. The present data
also show evidence for the prolate spheroidal distribution of matter in this
bipolar PN. The AGB mass loss history reconstructed in this PN is thus
consistent with what has been previously proposed based on the past optical and
mid-IR imaging surveys of the post-AGB shells.Comment: 9 pages in the emulated ApJ format with 6 figures, to appear in Ap
- …
