623 research outputs found

    Quantum Dynamics in Non-equilibrium Strongly Correlated Environments

    Full text link
    We consider a quantum point contact between two Luttinger liquids coupled to a mechanical system (oscillator). For non-vanishing bias, we find an effective oscillator temperature that depends on the Luttinger parameter. A generalized fluctuation-dissipation relation connects the decoherence and dissipation of the oscillator to the current-voltage characteristics of the device. Via a spectral representation, this result is generalized to arbitrary leads in a weak tunneling regime.Comment: 4 pages, 1 figur

    Hadronic Charmed Meson Decays Involving Axial Vector Mesons

    Get PDF
    Cabibbo-allowed charmed meson decays into a pseudoscalar meson and an axial-vector meson are studied. The charm to axial-vector meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise quark model. The dipole momentum dependence of the DKD\to K transition form factor and the presence of a sizable long-distance WW-exchange are the two key ingredients for understanding the data of DKˉa1D\to \bar Ka_1. The K1AK1BK_{1A}-K_{1B} mixing angle of the strange axial-vector mesons is found to be ±37\approx \pm37^\circ or ±58\pm58^\circ from τK1ντ\tau\to K_1\nu_\tau decays. The study of DK1(1270)π,K1(1400)πD\to K_1(1270)\pi, K_1(1400)\pi decays excludes the positive mixing-angle solutions. It is pointed out that an observation of the decay D0K1(1400)π+D^0\to K_1^-(1400)\pi^+ at the level of 5×1045\times 10^{-4} will rule out θ37\theta\approx -37^\circ and favor the solution θ58\theta\approx -58^\circ. Though the decays D0Kˉ10π0D^0\to \bar K_1^0\pi^0 are color suppressed, they are comparable to and even larger than the color-allowed counterparts: Kˉ10(1270)π0K1(1270)π+\bar K_1^0(1270)\pi^0\sim K_1^-(1270)\pi^+ and Kˉ10(1400)π0>K1(1400)π+\bar K_1^0(1400)\pi^0> K_1^-(1400)\pi^+. The finite width effect of the axial-vector resonance is examined. It becomes important for a1(1260)a_1(1260) in particular when its width is near 600 MeV.Comment: 19 page

    Superpotentials for M-theory on a G_2 holonomy manifold and Triality symmetry

    Get PDF
    For MM-theory on the G2G_2 holonomy manifold given by the cone on {\bf S^3}\x {\bf S^3} we consider the superpotential generated by membrane instantons and study its transformations properties, especially under monodromy transformations and triality symmetry. We find that the latter symmetry is, essentially, even a symmetry of the superpotential. As in Seiberg/Witten theory, where a flat bundle given by the periods of an universal elliptic curve over the uu-plane occurs, here a flat bundle related to the Heisenberg group appears and the relevant universal object over the moduli space is related to hyperbolic geometry.Comment: 58 pages, latex; references adde

    Adiabatic Transfer of Electrons in Coupled Quantum Dots

    Full text link
    We investigate the influence of dissipation on one- and two-qubit rotations in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with adiabatically varying parameters. For weak dissipation, we solve a master equation, compare with direct perturbation theory, and derive an expression for the `fidelity loss' during a simple operation that adiabatically moves an electron between two coupled dots. We discuss the possibility of visualizing coherent quantum oscillations in electron `pump' currents, combining quantum adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the role of intermediate charge states has been discussed recently, we apply our formalism to calculate the fidelity loss due to charge tunneling between two dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.

    Itinerant Ferromagnetism in the Periodic Anderson Model

    Full text link
    We introduce a novel mechanism for itinerant ferromagnetism, based on a simple two-band model. The model includes an uncorrelated and dispersive band hybridized with a second band which is narrow and correlated. The simplest Hamiltonian containing these ingredients is the Periodic Anderson Model (PAM). Using quantum Monte Carlo and analytical methods, we show that the PAM and an extension of it contain the new mechanism and exhibit a non-saturated ferromagnetic ground state in the intermediate valence regime. We propose that the mechanism, which does not assume an intra atomic Hund's coupling, is present in both the iron group and in some f electron compounds like Ce(Rh_{1-x} Ru_x)_3 B_2, La_x Ce_{1-x} Rh_3 B_2 and the uranium monochalcogenides US, USe, and UTe

    Efimov physics from the functional renormalization group

    Full text link
    Few-body physics related to the Efimov effect is discussed using the functional renormalization group method. After a short review of renormalization in its modern formulation we apply this formalism to the description of scattering and bound states in few-body systems of identical bosons and distinguishable fermions with two and three components. The Efimov effect leads to a limit cycle in the renormalization group flow. Recently measured three-body loss rates in an ultracold Fermi gas 6^6Li atoms are explained within this framework. We also discuss briefly the relation to the many-body physics of the BCS-BEC crossover for two-component fermions and the formation of a trion phase for the case of three species.Comment: 28 pages, 13 figures, invited contribution to a special issue of "Few-Body Systems" devoted to Efimov physics, published versio

    Efimov Trimers near the Zero-crossing of a Feshbach Resonance

    Full text link
    Near a Feshbach resonance, the two-body scattering length can assume any value. When it approaches zero, the next-order term given by the effective range is known to diverge. We consider the question of whether this divergence (and the vanishing of the scattering length) is accompanied by an anomalous solution of the three-boson Schr\"odinger equation similar to the one found at infinite scattering length by Efimov. Within a simple zero-range model, we find no such solutions, and conclude that higher-order terms do not support Efimov physics.Comment: 8 pages, no figures, final versio

    Rotational master equation for cold laser-driven molecules

    Full text link
    The equations of motion for the molecular rotation are derived for vibrationally cold dimers that are polarized by off-resonant laser light. It is shown that, by eliminating electronic and vibrational degrees of freedom, a quantum master equation for the reduced rotational density operator can be obtained. The coherent rotational dynamics is caused by stimulated Raman transitions, whereas spontaneous Raman transitions lead to decoherence in the motion of the quantized angular momentum. As an example the molecular dynamics for the optical Kerr effect is chosen, revealing decoherence and heating of the molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Search for lepton-flavor violation at HERA

    Get PDF
    A search for lepton-flavor-violating interactions epμXe p \to \mu X and epτXe p\to \tau X has been performed with the ZEUS detector using the entire HERA I data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data were taken at center-of-mass energies, s\sqrt{s}, of 300 and 318 GeV. No evidence of lepton-flavor violation was found, and constraints were derived on leptoquarks (LQs) that could mediate such interactions. For LQ masses below s\sqrt{s}, limits were set on λeq1βq\lambda_{eq_1} \sqrt{\beta_{\ell q}}, where λeq1\lambda_{eq_1} is the coupling of the LQ to an electron and a first-generation quark q1q_1, and βq\beta_{\ell q} is the branching ratio of the LQ to the final-state lepton \ell (μ\mu or τ\tau) and a quark qq. For LQ masses much larger than s\sqrt{s}, limits were set on the four-fermion interaction term λeqαλqβ/MLQ2\lambda_{e q_\alpha} \lambda_{\ell q_\beta} / M_{\mathrm{LQ}}^2 for LQs that couple to an electron and a quark qαq_\alpha and to a lepton \ell and a quark qβq_\beta, where α\alpha and β\beta are quark generation indices. Some of the limits are also applicable to lepton-flavor-violating processes mediated by squarks in RR-Parity-violating supersymmetric models. In some cases, especially when a higher-generation quark is involved and for the process epτXe p\to \tau X , the ZEUS limits are the most stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig. 6) adde

    Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2. The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s) = 318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of differential dijet and trijet cross sections are presented as functions of jet transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections, is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.) {+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure
    corecore