7,960 research outputs found

    Extreme Starlight Polarization in a Region with Highly Polarized Dust Emission

    Get PDF
    Galactic dust emission is polarized at unexpectedly high levels, as revealed by Planck. The origin of the observed 20%\simeq 20\% polarization fractions can be identified by characterizing the properties of optical starlight polarization in a region with maximally polarized dust emission. We measure the R-band linear polarization of 22 stars in a region with a submillimeter polarization fraction of 20\simeq 20%. A subset of 6 stars is also measured in the B, V and I bands to investigate the wavelength dependence of polarization. We find that starlight is polarized at correspondingly high levels. Through multiband polarimetry we find that the high polarization fractions are unlikely to arise from unusual dust properties, such as enhanced grain alignment. Instead, a favorable magnetic field geometry is the most likely explanation, and is supported by observational probes of the magnetic field morphology. The observed starlight polarization exceeds the classical upper limit of [pV/E(BV)]max=9\left[p_V/E\left(B-V\right)\right]_{\rm max} = 9%mag1^{-1} and is at least as high as 13%mag1^{-1} that was inferred from a joint analysis of Planck data, starlight polarization and reddening measurements. Thus, we confirm that the intrinsic polarizing ability of dust grains at optical wavelengths has long been underestimated.Comment: Accepted by A&AL, data to appear on CDS after publication. 6 page

    The Use of Music Software Teaching Playing the Drums

    Full text link
    При финансовой поддержке Российского гуманитарного научного фонда, проект № 08-06-14135

    Optical polarisation variability of radio loud narrow line Seyfert 1 galaxies. Search for long rotations of the polarisation plane

    Get PDF
    Narrow line Seyfert 1 galaxies (NLSy1s) constitute the AGN subclass associated with systematically smaller black hole masses. A few radio loud ones have been detected in MeV -- GeV energy bands by Fermi and evidence for the presence of blazar-like jets has been accumulated. In this study we wish to quantify the temporal behaviour of the optical polarisation, fraction and angle, for a selected sample of radio loud NLSy1s. We also search for rotations of the polarisation plane similar to those commonly observed in blazars. We have conducted R-band optical polarisation monitoring of a sample of 10 RL NLSy1s 5 of which have been previously detected by Fermi. The dataset includes observations with the RoboPol, KANATA, Perkins and Steward polarimeters. In the cases where evidences for long rotations of the polarisation plane are found, we carry out numerical simulations to assess the probability that they are caused by intrinsically evolving EVPAs instead of observational noise. Even our moderately sampled sources show indications of variability, both in polarisation fraction and angle. For the four best sampled objects in our sample we find multiple periods of significant polarisation angle variability. In the two best sampled cases, namely J1505+0326 and J0324+3410, we find indications for three long rotations. We show that although noise can induce the observed behaviour, it is much more likely that the apparent rotation is caused by intrinsic evolution of the EVPA. To our knowledge this is the very first detection of such events in this class of sources. In the case of the largest dataset (J0324+3410) we find that the EVPA concentrates around a direction which is at 49.3\degr to the 15-GHz radio jet implying a projected magnetic field at an angle of 40.7\degr to that axis.Comment: Accepted for publication in section 2. Astrophysical processes of Astronomy and Astrophysic

    The Impact of σ(e+ehadrons)\sigma(e^+e^-\to {hadrons}) Measurements at Intermediate Energies on the Parameters of the Standard Model

    Full text link
    We discuss the impact of precision measurements of σ(e+ehadrons)\sigma(e^+e^-\to {hadrons}) in the center-of-mass range between 3 and 12 GeV, including improvements in the electronic widths of the narrow charmonium and bottonium resonances, on the determination of parameters of the Standard Model. In particular we discuss the impact of potential improvements on the extraction of the strong coupling constant αs\alpha_s, on the evaluation of the hadronic contributions to the electromagnetic coupling α(MZ)\alpha(M_Z), and the determination of the charm and bottom quark masses.Comment: 8 page

    Emergence of a measurement basis in atom-photon scattering

    Full text link
    The process of quantum measurement has been a long standing source of debate. A measurement is postulated to collapse a wavefunction onto one of the states of a predetermined set - the measurement basis. This basis origin is not specified within quantum mechanics. According to the theory of decohernce, a measurement basis is singled out by the nature of coupling of a quantum system to its environment. Here we show how a measurement basis emerges in the evolution of the electronic spin of a single trapped atomic ion due to spontaneous photon scattering. Using quantum process tomography we visualize the projection of all spin directions, onto this basis, as a photon is scattered. These basis spin states are found to be aligned with the scattered photon propagation direction. In accordance with decohernce theory, they are subjected to a minimal increase in entropy due to the photon scattering, while, orthogonal states become fully mixed and their entropy is maximally increased. Moreover, we show that detection of the scattered photon polarization measures the spin state of the ion, in the emerging basis, with high fidelity. Lastly, we show that while photon scattering entangles all superpositions of pointer states with the scattered photon polarization, the measurement-basis states themselves remain classically correlated with it. Our findings show that photon scattering by atomic spin superpositions fulfils all the requirements from a quantum measurement process

    Eliminating artefacts in polarimetric images using deep learning

    Get PDF
    Polarization measurements done using Imaging Polarimeters such as the Robotic Polarimeter are very sensitive to the presence of artefacts in images. Artefacts can range from internal reflections in a telescope to satellite trails that could contaminate an area of interest in the image. With the advent of wide-field polarimetry surveys, it is imperative to develop methods that automatically flag artefacts in images. In this paper, we implement a Convolutional Neural Network to identify the most dominant artefacts in the images. We find that our model can successfully classify sources with 98 per cent true positive and 97 per cent true negative rates. Such models, combined with transfer learning, will give us a running start in artefact elimination for near-future surveys like WALOP

    Optical EVPA rotations in blazars: testing a stochastic variability model with RoboPol data

    Get PDF
    We identify rotations of the polarization angle in a sample of blazars observed for three seasons with the RoboPol instrument. A simplistic stochastic variability model is tested against this sample of rotation events. The model is capable of producing samples of rotations with parameters similar to the observed ones, but fails to reproduce the polarization fraction at the same time. Even though we can neither accept nor conclusively reject the model, we point out various aspects of the observations that are fully consistent with a random walk process

    Composition Conditions for Classes of Analytic Functions

    Full text link
    We prove that for classes of analytic functions tree composition condition and composition condition coincide.Comment: 13 page
    corecore